login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A173441
Number of divisors d of n such that sigma(d) divides n.
8
1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 4, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 2, 1, 4, 1, 1, 1, 5, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 2, 1, 1
OFFSET
1,6
COMMENTS
From Robert Israel, Oct 11 2017: (Start)
a(n) >= 1 since d=1 is always included.
a(n) = 1 if n is in A000961.
a(n) > 1 if n is in A097603. The first n not in A097603 such that a(n) > 1 is 117. (End)
LINKS
FORMULA
a(n) = A000005(n) - A173442(n). - A-number inserted by R. J. Mathar, Mar 06 2010
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{n>=1} 1/A009242(n) = 1.605582... . - Amiram Eldar, Mar 28 2024
EXAMPLE
For n = 12, a(12) = 4; divisors of 12: 1, 2, 3, 4, 6, 12; corresponding sigma(d):1, 3, 4, 7, 12, 28; sigma(d) divides n for 4 divisors d: 1, 2, 3, 6.
MAPLE
f:= proc(n) nops(select(t -> n mod numtheory:-sigma(t) = 0, numtheory:-divisors(n))) end proc:
map(f, [$1..100]); # Robert Israel, Oct 11 2017
MATHEMATICA
a[n_] := Select[Divisors[n], Divisible[n, DivisorSigma[1, #]]&] // Length;
Array[a, 100] (* Jean-François Alcover, Jun 05 2020 *)
PROG
(PARI) a(n) = sumdiv(n, d, !(n % sigma(d))); \\ Michel Marcus, Oct 11 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, Feb 18 2010
STATUS
approved