login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A325403
Number of permutations of the multiset of prime factors of 2n whose first part is not 2.
2
0, 0, 1, 0, 1, 1, 1, 0, 2, 1, 1, 1, 1, 1, 4, 0, 1, 3, 1, 1, 4, 1, 1, 1, 2, 1, 3, 1, 1, 6, 1, 0, 4, 1, 4, 4, 1, 1, 4, 1, 1, 6, 1, 1, 9, 1, 1, 1, 2, 3, 4, 1, 1, 6, 4, 1, 4, 1, 1, 8, 1, 1, 9, 0, 4, 6, 1, 1, 4, 6, 1, 5, 1, 1, 9, 1, 4, 6, 1, 1, 4, 1, 1, 8, 4, 1, 4, 1, 1, 18, 4, 1, 4, 1, 4, 1, 1, 3, 9, 4, 1, 6, 1, 1, 18
OFFSET
1,9
LINKS
FORMULA
a(n) = A008480(2n) - A008480(n) = A325392(2n).
EXAMPLE
The a(60) = 8 permutations of {2,2,2,3,5} whose first part is not 2:
3 2 2 2 5
3 2 2 5 2
3 2 5 2 2
3 5 2 2 2
5 2 2 2 3
5 2 2 3 2
5 2 3 2 2
5 3 2 2 2
MATHEMATICA
Table[Length[Select[Permutations[Flatten[Table@@@FactorInteger[2*n]]], First[#]!=2&]], {n, 100}]
PROG
(PARI)
A008480(n) = {my(sig=factor(n)[, 2]); vecsum(sig)!/factorback(apply(k->k!, sig))}; \\ After code in A008480
A325403(n) = (A008480(n+n)-A008480(n)); \\ Antti Karttunen, Dec 06 2021
KEYWORD
nonn
AUTHOR
Gus Wiseman, May 02 2019
EXTENSIONS
Data section extended up to 105 terms by Antti Karttunen, Dec 06 2021
STATUS
approved