

A325364


Heinz numbers of integer partitions whose differences (with the last part taken to be zero) are weakly decreasing.


14



1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15, 16, 17, 18, 19, 21, 23, 25, 27, 29, 30, 31, 32, 35, 37, 41, 43, 47, 49, 53, 54, 55, 59, 61, 64, 65, 67, 71, 73, 75, 77, 79, 81, 83, 89, 91, 97, 101, 103, 105, 107, 109, 113, 119, 121, 125, 127, 128, 131, 133, 137, 139
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The differences of a sequence are defined as if the sequence were increasing, so for example the differences of (x, y, z) are (y  x, z  y). We adhere to this standard for integer partitions also even though they are always weakly decreasing. For example, the differences of (6,3,1) (with the last part taken to be 0) are (3,2,1).
The enumeration of these partitions by sum is given by A320509.


LINKS



MATHEMATICA

primeptn[n_]:=If[n==1, {}, Reverse[Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]]];
Select[Range[100], GreaterEqual@@Differences[Append[primeptn[#], 0]]&]


CROSSREFS

Cf. A056239, A112798, A320348, A320466, A320509, A325327, A325361, A325364, A325367, A325389, A325390, A325397.


KEYWORD

nonn


AUTHOR



STATUS

approved



