login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A285710
Numbers n for which A000010(n) = A285699(n); positions of zeros in A285709.
6
1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 14, 16, 17, 19, 21, 23, 25, 27, 28, 29, 31, 32, 37, 41, 43, 47, 49, 53, 59, 61, 62, 64, 67, 71, 73, 79, 81, 83, 89, 97, 101, 103, 107, 109, 113, 121, 124, 125, 127, 128, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 237
OFFSET
1,2
COMMENTS
After a(1) = 1, also numbers n such that A051953(n) = A079277(n).
LINKS
MATHEMATICA
Flatten@ Position[#, 0] &@ Table[EulerPhi@ n - (n - If[n <= 2, n - 1, Module[{k = n - 2, e = Floor@ Log2@ n}, While[PowerMod[n, e, k] != 0, k--]; k]]), {n, 240}] (* Michael De Vlieger, Apr 26 2017 *)
PROG
(Scheme, with Antti Karttunen's IntSeq-library)
(define A285710 (ZERO-POS 1 1 A285709))
(Python)
from sympy import divisors, totient
from sympy.ntheory.factor_ import core
def a007947(n): return max(i for i in divisors(n) if core(i) == i)
def a079277(n):
k=n - 1
while True:
if a007947(k*n) == a007947(n): return k
else: k-=1
def a285699(n): return 1 if n<2 else n - a079277(n)
print([n for n in range(1, 301) if totient(n) == a285699(n)]) # Indranil Ghosh, Apr 26 2017
CROSSREFS
Positions of zeros in A285709.
Cf. A000961 (a subsequence).
Sequence in context: A331125 A318736 A050741 * A305669 A325364 A133810
KEYWORD
nonn
AUTHOR
Antti Karttunen, Apr 26 2017
STATUS
approved