login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A285711
a(n) = gcd(A051953(n), A079277(n)), a(1) = 1.
5
1, 1, 1, 2, 1, 4, 1, 4, 3, 2, 1, 1, 1, 8, 1, 8, 1, 4, 1, 4, 9, 4, 1, 2, 5, 2, 9, 16, 1, 1, 1, 16, 1, 2, 1, 8, 1, 4, 3, 8, 1, 6, 1, 8, 3, 8, 1, 4, 7, 10, 1, 4, 1, 12, 5, 1, 3, 2, 1, 2, 1, 32, 1, 32, 1, 2, 1, 4, 1, 2, 1, 16, 1, 2, 5, 8, 1, 18, 1, 16, 27, 2, 1, 3, 1, 4, 1, 16, 1, 3, 1, 16, 3, 16, 1, 1, 1, 8, 3, 20, 1, 2, 1, 8, 3, 2, 1, 24, 1, 10, 3, 2, 1, 6, 1
OFFSET
1,4
LINKS
FORMULA
a(1) = 1; for n > 1, a(n) = gcd(A051953(n), A079277(n)).
MATHEMATICA
Table[GCD[n - EulerPhi@ n, If[n <= 2, 1, Module[{k = n - 2, e = Floor@ Log2@ n}, While[PowerMod[n, e, k] != 0, k--]; k]]], {n, 115}] (* Michael De Vlieger, Apr 26 2017 *)
PROG
(Scheme) (define (A285711 n) (if (= 1 n) n (gcd (A051953 n) (A079277 n))))
(Python)
from sympy import divisors, totient, gcd
from sympy.ntheory.factor_ import core
def a007947(n): return max(i for i in divisors(n) if core(i) == i)
def a079277(n):
k=n - 1
while True:
if a007947(k*n) == a007947(n): return k
else: k-=1
def a(n): return 1 if n==1 else gcd(n - totient(n), a079277(n))
print([a(n) for n in range(1, 151)]) # Indranil Ghosh, Apr 26 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Apr 26 2017
STATUS
approved