login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A339792 Third coefficient of the lindep transform of sigma(n). 3
0, -1, -1, 1, -1, 0, -1, 1, 1, 2, -1, -4, -1, 4, -3, 1, -1, -3, -1, -2, -1, 2, -1, 0, -6, -6, 1, 0, -1, 6, -1, 1, 3, -6, -4, -2, -1, -6, 5, 0, -1, 6, -1, 4, 3, -6, -1, -8, -8, 7, -3, 6, -1, 6, 4, -8, -1, -6, -1, 12, -1, -6, 3, 1, 8, -12, -1, 10, 3, -4, -1, -9, -1, -6, 3, 12, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,10

COMMENTS

If b(n) is a sequence of integers, we will call the "lindep transform" of b(n) the triplet of sequences (x(n), y(n), z(n)) such that:

(i) x(n) >= 1

(ii) x(n) + abs(y(n)) + abs(z(n)) is minimal

(iii) x(n)*b(n) + y(n)*n + z(n) = 0

(iv) if more than one triplet (x(n), y(n), z(n)) satisfies conditions (i), (ii), and (iii), we then choose the one with minimal y(n).

We call x(n) the first coefficient of the lindep transform of b(n), y(n) the second and z(n) the third. As this corresponds to the lindep function of PARI/GP this transform is called "lindep transform".

LINKS

Table of n, a(n) for n=1..77.

Benoit Cloitre, a(n)/sqrt(n) every 1000 up to 6*10^6

FORMULA

Conjecture: a(n) << sqrt(n) with -infinity < liminf_{n->infinity} a(n)/sqrt(n) < 0 and 0 < limsup_{n->infinity} a(n)/sqrt(n) < infinity exist (see graphic).

CROSSREFS

Cf. A000203, A339790, A339791.

Sequence in context: A229340 A322968 A072721 * A285711 A035092 A160598

Adjacent sequences:  A339789 A339790 A339791 * A339793 A339794 A339795

KEYWORD

sign

AUTHOR

Benoit Cloitre, Dec 17 2020

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 16 20:09 EDT 2021. Contains 348044 sequences. (Running on oeis4.)