login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A339794
a(n) is the least integer k satisfying rad(k)^2 < sigma(k) and whose prime factors set is the same as the prime factors set of A005117(n+1).
2
4, 9, 25, 18, 49, 80, 121, 169, 112, 135, 289, 361, 441, 352, 529, 416, 841, 360, 961, 891, 1088, 875, 1369, 1216, 1053, 1681, 672, 1849, 1472, 2209, 2601, 2809, 3025, 3249, 1856, 3481, 3721, 1984, 4225, 1584, 4489, 4761, 1960, 5041, 5329, 4736, 5929, 2496, 6241
OFFSET
1,1
COMMENTS
Equivalently, subsequence of terms of A339744 excluding terms whose prime factor set has already been encountered.
a(n) = A005117(n + 1)^2 when A005117(n + 1) is prime. Proof: if A005117(n + 1) is a prime p then rad(A005117(n + 1))^2 = rad(p)^2 = p^2 and so integers whose prime factors set is the same as the prime factors set of A005117(n + 1) = p are p^m where m >= 1. p^2 > sigma(p^1) = p + 1 but p^2 < sigma(p^2) = p^2 + p + 1. Q.E.D. - David A. Corneth, Dec 19 2020
From Bernard Schott, Jan 19 2021: (Start)
Indeed, a(n) satisfies the double inequality A005117(n+1) < a(n) <= A005117(n+1)^2.
It is also possible that a(n) = A005117(n+1)^2, even when A005117(n+1) is not prime; the smallest such example is for a(13) = 441 = 21^2 = A005117(14)^2. (End)
LINKS
David A. Corneth, Table of n, a(n) for n = 1..10000 (first 1000 terms from Michel Marcus)
FORMULA
a(n) <= A005117(n+1)^2. - David A. Corneth, Dec 19 2020
EXAMPLE
n a(n) prime factor set
1 4 [2] A000079
2 9 [3] A000244
3 25 [5] A000351
4 18 [2, 3] A033845
5 49 [7] A000420
6 80 [2, 5] A033846
7 121 [11] A001020
8 169 [13] A001022
9 112 [2, 7] A033847
10 135 [3, 5] A033849
11 289 [17] A001026
12 361 [19] A001029
13 441 [3, 7] A033850
14 352 [2, 11] A033848
15 529 [23] A009967
16 416 [2, 13] A288162
17 841 [29] A009973
18 360 [2, 3, 5] A143207
PROG
(PARI) u(n) = {my(fn=factor(n)[, 1]); for (k = n, n^2, my(fk = factor(k)); if (fk[, 1] == fn, if (factorback(fk[, 1])^2 < sigma(fk), return (k)); ); ); }
lista(nn) = {for (n=2, nn, if (issquarefree(n), print1(u(n), ", "); ); ); }
CROSSREFS
Cf. A000203 (sigma), A007947 (rad).
Cf. A005117 (squarefree numbers), A027748, A265668, A339744.
Subsequence: A001248 (squares of primes).
Sequence in context: A131826 A366786 A051961 * A251544 A175119 A093867
KEYWORD
nonn
AUTHOR
Michel Marcus, Dec 17 2020
STATUS
approved