login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A339796
Number of (undirected) paths in the graph C_4 X C_n.
5
41676, 725408, 10489660, 136547568, 1660652028, 19269238080, 216100013292, 2362533383920, 25329574375116, 267467192029728, 2790488055689724, 28832824624840880, 295579830237167580, 3010545385659678848, 30497626012737910348, 307541698683047474544
OFFSET
3,1
LINKS
Eric Weisstein's World of Mathematics, Torus Grid Graph
PROG
(Python)
# Using graphillion
from graphillion import GraphSet
def make_CnXCk(n, k):
grids = []
for i in range(1, k + 1):
for j in range(1, n):
grids.append((i + (j - 1) * k, i + j * k))
grids.append((i + (n - 1) * k, i))
for i in range(1, k * n, k):
for j in range(1, k):
grids.append((i + j - 1, i + j))
grids.append((i + k - 1, i))
return grids
def A(start, goal, n, k):
universe = make_CnXCk(n, k)
GraphSet.set_universe(universe)
paths = GraphSet.paths(start, goal)
return paths.len()
def B(n, k):
m = k * n
s = 0
for i in range(1, m):
for j in range(i + 1, m + 1):
s += A(i, j, n, k)
return s
def A339796(n):
return B(n, 4)
print([A339796(n) for n in range(3, 10)])
CROSSREFS
Cf. A339075, A339798 (Hamiltonian paths).
Sequence in context: A031669 A028239 A248445 * A251978 A258689 A258685
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Dec 17 2020
STATUS
approved