login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A229340
Euler totient function of the arithmetic derivative of n: a(n) = phi(n'), a(1) = 0.
4
0, 1, 1, 2, 1, 4, 1, 4, 2, 6, 1, 8, 1, 6, 4, 16, 1, 12, 1, 8, 4, 12, 1, 20, 4, 8, 18, 16, 1, 30, 1, 32, 6, 18, 4, 16, 1, 12, 8, 32, 1, 40, 1, 16, 24, 20, 1, 48, 6, 24, 8, 24, 1, 54, 8, 44, 10, 30, 1, 44, 1, 20, 32, 64, 6, 60, 1, 24, 12, 58, 1, 48, 1, 24, 40, 32, 6, 70, 1, 80, 36, 42, 1, 60, 10, 24, 16, 48, 1, 80, 8, 32, 16, 42, 8
OFFSET
1,4
COMMENTS
a(1) = 0 by convention. - Antti Karttunen, Oct 30 2017
LINKS
FORMULA
a(1) = 0; and for n > 1, a(n) = A000010(A003415(n)).
EXAMPLE
For n=4 phi(n')=phi(4')=phi(4)=2.
For n=7 phi(n')=phi(7')=phi(1)=1.
MATHEMATICA
Array[EulerPhi@ If[Abs@ # < 2, 0, # Total[#2/#1 & @@@ FactorInteger[Abs@ #]]] &, 75] (* Michael De Vlieger, Oct 30 2017, after Michael Somos at A003415 *)
PROG
(PARI) rd(n) = {local(fac); if(n<1, 0, fac=factor(n); sum(i=1, matsize(fac)[1], n*fac[i, 2]/fac[i, 1]; )); }
a(n) = eulerphi(rd(n)); \\ Michel Marcus, Sep 24 2013
CROSSREFS
Sequence in context: A263432 A286518 A029205 * A322968 A072721 A339792
KEYWORD
nonn
AUTHOR
Luca Brigada Villa, Sep 24 2013
EXTENSIONS
Description/formula clarified and more terms added by Antti Karttunen, Oct 30 2017
STATUS
approved