login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A229341
a(n) = tau(n'), the number of divisors of the arithmetic derivative of n.
4
1, 1, 3, 1, 2, 1, 6, 4, 2, 1, 5, 1, 3, 4, 6, 1, 4, 1, 8, 4, 2, 1, 6, 4, 4, 4, 6, 1, 2, 1, 10, 4, 2, 6, 12, 1, 4, 5, 6, 1, 2, 1, 10, 4, 3, 1, 10, 4, 6, 6, 8, 1, 5, 5, 6, 4, 2, 1, 6, 1, 4, 4, 14, 6, 2, 1, 12, 4, 2, 1, 12, 1, 4, 4, 10, 6, 2, 1, 10, 12, 2, 1, 6, 4, 6
OFFSET
2,3
LINKS
FORMULA
a(n) = A000005(A003415(n)).
EXAMPLE
For n=4, tau(n')=tau(4)=3.
For n=5, tau(n')=tau(1)=1.
MATHEMATICA
dn[0] = 0; dn[1] = 0; dn[n_?Negative] := -dn[-n]; dn[n_] := Module[{f = Transpose@ FactorInteger@ n}, If[PrimeQ@n, 1, Total[n*f[[2]]/f[[1]]]]]; (* see A003415 *); f[n_] := DivisorSigma[0, dn@ n]; Array[f, 85, 2] (* Robert G. Wilson v, Mar 12 2018 *)
PROG
(PARI) rd(n) = {local(fac); if(n<1, 0, fac=factor(n); sum(i=1, matsize(fac)[1], n*fac[i, 2]/fac[i, 1]; )); }
a(n) = numdiv(rd(n)); \\ Michel Marcus, Sep 24 2013
(GAP) List(List(List([2..10^2], Factors), i->Product(i)*Sum(i, j->1/j)), Tau); # Muniru A Asiru, Mar 05 2018
CROSSREFS
Sequence in context: A008296 A351397 A140185 * A372245 A106790 A078897
KEYWORD
nonn
AUTHOR
Luca Brigada Villa, Sep 24 2013
STATUS
approved