login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = tau(n'), the number of divisors of the arithmetic derivative of n.
4

%I #49 Mar 26 2018 20:59:27

%S 1,1,3,1,2,1,6,4,2,1,5,1,3,4,6,1,4,1,8,4,2,1,6,4,4,4,6,1,2,1,10,4,2,6,

%T 12,1,4,5,6,1,2,1,10,4,3,1,10,4,6,6,8,1,5,5,6,4,2,1,6,1,4,4,14,6,2,1,

%U 12,4,2,1,12,1,4,4,10,6,2,1,10,12,2,1,6,4,6

%N a(n) = tau(n'), the number of divisors of the arithmetic derivative of n.

%H Antti Karttunen, <a href="/A229341/b229341.txt">Table of n, a(n) for n = 2..65537</a>

%F a(n) = A000005(A003415(n)).

%e For n=4, tau(n')=tau(4)=3.

%e For n=5, tau(n')=tau(1)=1.

%t dn[0] = 0; dn[1] = 0; dn[n_?Negative] := -dn[-n]; dn[n_] := Module[{f = Transpose@ FactorInteger@ n}, If[PrimeQ@n, 1, Total[n*f[[2]]/f[[1]]]]]; (* see A003415 *); f[n_] := DivisorSigma[0, dn@ n]; Array[f, 85, 2] (* _Robert G. Wilson v_, Mar 12 2018 *)

%o (PARI) rd(n) = {local(fac); if(n<1, 0, fac=factor(n); sum(i=1, matsize(fac)[1], n*fac[i, 2]/fac[i, 1];));}

%o a(n) = numdiv(rd(n)); \\ _Michel Marcus_, Sep 24 2013

%o (GAP) List(List(List([2..10^2],Factors),i->Product(i)*Sum(i,j->1/j)),Tau); # _Muniru A Asiru_, Mar 05 2018

%Y Cf. A000005, A003415.

%K nonn

%O 2,3

%A _Luca Brigada Villa_, Sep 24 2013