login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A106790
Smallest k>0 such that binomial(n,k) + 1 is prime.
1
1, 1, 3, 1, 2, 1, 7, 2, 2, 1, 4, 1, 2, 5, 15, 1, 2, 1, 4, 2, 2, 1, 23, 2, 6, 4, 4, 1, 7, 1, 31, 10, 6, 10, 4, 1, 18, 15, 9, 1, 2, 1, 17, 2, 2, 1, 23, 2, 4, 20, 6, 1, 6, 8, 10, 6, 2, 1, 59, 1, 2, 25, 63, 2, 2, 1, 67, 8, 2, 1
OFFSET
1,3
COMMENTS
a(n) <= n; for primes p: a(p-1) = 1.
The values of n for which a(n)=n yield the sequence A067317. - Emeric Deutsch, Aug 27 2007
If a(n) > n/2 then a(n) = n. a(n) = floor(n/2) for n = 2, 5, 37, 47, 124. Are there others? - Robert Israel, Mar 09 2020
LINKS
MAPLE
a:=proc(n) local k: for k while isprime(1+binomial(n, k))=false do end do: k end proc: seq(a(n), n=1..70); # Emeric Deutsch, Aug 27 2007
MATHEMATICA
a[n_] := For[k = 1, True, k++, If[PrimeQ[Binomial[n, k] + 1], Return[k]]];
Array[a, 70] (* Jean-François Alcover, Feb 13 2018 *)
CROSSREFS
Sequence in context: A140185 A229341 A372245 * A078897 A322034 A351436
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, May 16 2005
EXTENSIONS
Corrected and extended by Emeric Deutsch, Aug 27 2007
STATUS
approved