login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A322034 Let p1 <= p2 <= ... <= pk be the prime factors of n, with repetition; let s = 1/p1 + 1/(p1*p2) + 1/(p1*p2*p3) + ... + 1/(p1*p2*...*pk); a(n) = numerator of s. a(1)=0 by convention. 5
0, 1, 1, 3, 1, 2, 1, 7, 4, 3, 1, 5, 1, 4, 2, 15, 1, 13, 1, 4, 8, 6, 1, 11, 6, 7, 13, 11, 1, 7, 1, 31, 4, 9, 8, 31, 1, 10, 14, 9, 1, 29, 1, 17, 7, 12, 1, 23, 8, 31, 6, 10, 1, 20, 12, 25, 20, 15, 1, 17, 1, 16, 29, 63, 14, 15, 1, 13, 8, 43, 1, 67 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,4

COMMENTS

Note that s < 1 for all n (compare A322036). This follows easily by induction, since when we increase n by multiplying it by a new (not-smaller) prime, we increase s by less than 1-s.

LINKS

Antti Karttunen, Table of n, a(n) for n = 1..16384

Antti Karttunen, Data supplement: n, a(n) computed for n = 1..65537

EXAMPLE

If n=12 we get the prime factors 2,2,3, and s = 1/2 + 1/4 + 1/12 = 5/6. So a(12) = 5.

The fractions s for n >= 2 are 1/2, 1/3, 3/4, 1/5, 2/3, 1/7, 7/8, 4/9, 3/5, 1/11, 5/6, 1/13, 4/7, 2/5, 15/16, 1/17, 13/18, 1/19, 4/5, 8/21, ...

MAPLE

# This generates the terms starting at n=2:

P:=proc(n) local FM: FM:=ifactors(n)[2]: seq(seq(FM[j][1], k=1..FM[j][2]), j=1..nops(FM)) end: # A027746

f0:=[]; f1:=[]; f2:=[];

for n from 2 to 120 do

a:=0; b:=1; t1:=[P(n)];

for i from 1 to nops(t1) do b:=b/t1[i]; a:=a+b; od;

f0:=[op(f0), a]; f1:=[op(f1), numer(a)]; f2:=[op(f2), denom(a)]; od:

f0;    # s

f1;    # A322034

f2;    # A322035

f2-f1; # A322036

PROG

(PARI) A322034(n) = if(1==n, 0, my(f=factor(n), pm=1, s=0); for(i=1, #f~, while(f[i, 2], pm *= f[i, 1]; f[i, 2]--; s += 1/pm)); numerator(s)); \\ Antti Karttunen, Feb 28 2019

CROSSREFS

Cf. A006022, A027746, A322035, A322036.

A017665/A017666 = sum of reciprocals of all divisors of n.

Sequence in context: A229341 A106790 A078897 * A226629 A349620 A349380

Adjacent sequences:  A322031 A322032 A322033 * A322035 A322036 A322037

KEYWORD

nonn,frac

AUTHOR

N. J. A. Sloane and David James Sycamore, Nov 28 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 3 12:16 EST 2021. Contains 349462 sequences. (Running on oeis4.)