login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A322031
(Sum_{t=0..oo} ((-1)^t*(2*t+1)*q^((2*t+1)^2)))^3 * (Sum_{t=0..oo} q^((2*t+1)^2)) = Sum_{k=0..oo} a(k)*q^(8*k+4).
0
1, -8, 18, 16, -111, 72, 178, -144, -126, -232, 384, 432, -301, 240, -1422, -192, 1728, 288, 530, -1424, 162, -888, -1998, 2016, 1633, 1008, 594, 1296, -5568, -1368, 626, -1776, 3204, 632, 10368, -4464, -6686, 2408, -3456, 800, -3231, -2664
OFFSET
0,2
COMMENTS
This is Glaisher's Q(m).
REFERENCES
J. W. L. Glaisher, On the representations of a number as a sum of four squares, and on some allied arithmetical functions, Quarterly Journal of Pure and Applied Mathematics, 36 (1905), 305-358. See p. 340.
Glaisher, J. W. L. (1906). The arithmetical functions P(m), Q(m), Omega(m). Quart. J. Math, 37, 36-48.
MAPLE
Q1:= (add( (-1)^t*(2*t+1)*q^((2*t+1)^2), t=0..1001))^3 * (add(q^((2*t+1)^2), t=0..1001))^1;
Q2:=series(Q1, q, 1000); Q3 := seriestolist(Q2);
Q4:=[seq(Q3[8*i+5], i=0..120)];
CROSSREFS
Sequence in context: A133202 A217424 A332969 * A196207 A196474 A251258
KEYWORD
sign,changed
AUTHOR
N. J. A. Sloane, Nov 24 2018
STATUS
approved