The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A322031 (Sum_{t=0..oo} ((-1)^t*(2*t+1)*q^((2*t+1)^2)))^3 * (Sum_{t=0..oo} q^((2*t+1)^2)) = Sum_{k=0..oo} a(k)*q^(8*k+4). 0
 1, -8, 18, 16, -111, 72, 178, -144, -126, -232, 384, 432, -301, 240, -1422, -192, 1728, 288, 530, -1424, 162, -888, -1998, 2016, 1633, 1008, 594, 1296, -5568, -1368, 626, -1776, 3204, 632, 10368, -4464, -6686, 2408, -3456, 800, -3231, -2664 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS This is Glaisher's Q(m). REFERENCES J. W. L. Glaisher, On the representations of a number as a sum of four squares, and on some allied arithmetical functions, Quarterly Journal of Pure and Applied Mathematics, 36 (1905), 305-358. See p. 340. Glaisher, J. W. L. (1906). The arithmetical functions P(m), Q(m), Omega{m). Quart. J. Math, 37, 36-48. LINKS J. W. L. Glaisher, On the representations of a number as the sum of two, four, six, eight, ten, and twelve squares, Quart. J. Math. 38 (1907), 1-62 (see p. 5). MAPLE Q1:= (add( (-1)^t*(2*t+1)*q^((2*t+1)^2), t=0..1001))^3 * (add(q^((2*t+1)^2), t=0..1001))^1; Q2:=series(Q1, q, 1000); Q3 := seriestolist(Q2); Q4:=[seq(Q3[8*i+5], i=0..120)]; CROSSREFS Sequence in context: A133202 A217424 A332969 * A196207 A196474 A251258 Adjacent sequences:  A322028 A322029 A322030 * A322032 A322033 A322034 KEYWORD sign AUTHOR N. J. A. Sloane, Nov 24 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 2 22:46 EST 2021. Contains 349445 sequences. (Running on oeis4.)