login
A322031
(Sum_{t=0..oo} ((-1)^t*(2*t+1)*q^((2*t+1)^2)))^3 * (Sum_{t=0..oo} q^((2*t+1)^2)) = Sum_{k=0..oo} a(k)*q^(8*k+4).
0
1, -8, 18, 16, -111, 72, 178, -144, -126, -232, 384, 432, -301, 240, -1422, -192, 1728, 288, 530, -1424, 162, -888, -1998, 2016, 1633, 1008, 594, 1296, -5568, -1368, 626, -1776, 3204, 632, 10368, -4464, -6686, 2408, -3456, 800, -3231, -2664
OFFSET
0,2
COMMENTS
This is Glaisher's Q(m).
REFERENCES
J. W. L. Glaisher, On the representations of a number as a sum of four squares, and on some allied arithmetical functions, Quarterly Journal of Pure and Applied Mathematics, 36 (1905), 305-358. See p. 340.
Glaisher, J. W. L. (1906). The arithmetical functions P(m), Q(m), Omega(m). Quart. J. Math, 37, 36-48.
MAPLE
Q1:= (add( (-1)^t*(2*t+1)*q^((2*t+1)^2), t=0..1001))^3 * (add(q^((2*t+1)^2), t=0..1001))^1;
Q2:=series(Q1, q, 1000); Q3 := seriestolist(Q2);
Q4:=[seq(Q3[8*i+5], i=0..120)];
CROSSREFS
Sequence in context: A133202 A217424 A332969 * A196207 A196474 A251258
KEYWORD
sign
AUTHOR
N. J. A. Sloane, Nov 24 2018
STATUS
approved