login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A372245
Triangular array T(n,k) read by rows: column k is the expansion of e.g.f: exp(-2*x)*(exp(x)-1)^k/(2-exp(x)).
1
1, -1, 1, 3, -1, 2, -1, 7, 0, 6, 27, 11, 26, 12, 24, 119, 151, 120, 150, 120, 120, 1203, 1139, 1202, 1140, 1200, 1080, 720, 11759, 11887, 11760, 11886, 11760, 11760, 10080, 5040, 136587, 136331, 136586, 136332, 136584, 136080, 131040, 100800, 40320, 1771559, 1772071, 1771560, 1772070
OFFSET
0,4
FORMULA
T(n, k) = Sum_{m=0..n} ((-1)^(1+m+n)*binomial(k, n)*(2^(k - n) - 1)*A084416(m, k - 1)), for k > 0.
T(n, 0) = A344037(n).
T(n, 1) = A052841(n) - A344037(n).
T(n, 2) = A344037(n) - 2*A052841(n) + A000670(n).
EXAMPLE
Triangle T(n, k) starts:
[0] 1;
[1] -1, 1;
[2] 3, -1, 2;
[3] -1, 7, 0, 6;
[4] 27, 11, 26, 12, 24;
[5] 119, 151, 120, 150, 120, 120;
[6] 1203, 1139, 1202, 1140, 1200, 1080, 720;
[7] 11759, 11887, 11760, 11886, 11760, 11760, 10080, 5040;
[8] 136587, 136331, 136586, 136332, 136584, 136080, 131040, 100800, 40320;
PROG
(PARI) T(n, k) = sum(m=0, n, ((-1)^((k > 0)+m+n)*binomial(n, m)*(2^(n-m)-(k > 0))*sum(h=max(k-1, 0), m, h!*stirling(m, h, 2))))
CROSSREFS
KEYWORD
sign,easy,tabl
AUTHOR
Thomas Scheuerle, Apr 26 2024
STATUS
approved