The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A229339 GCD of all sums of n consecutive Lucas numbers. 3
 1, 1, 2, 5, 1, 4, 1, 15, 2, 11, 1, 40, 1, 29, 2, 105, 1, 76, 1, 275, 2, 199, 1, 720, 1, 521, 2, 1885, 1, 1364, 1, 4935, 2, 3571, 1, 12920, 1, 9349, 2, 33825, 1, 24476, 1, 88555, 2, 64079, 1, 231840, 1, 167761, 2, 606965, 1, 439204, 1, 1589055, 2, 1149851, 1, 4160200, 1, 3010349, 2 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS The sum of two consecutive Lucas number is the sum of four consecutive Fibonacci numbers, which is verified easily enough with the identity L(n) = F(n - 1) + F(n + 1). Therefore a(1) = a(2) = A210209(4). LINKS Colin Barker, Table of n, a(n) for n = 1..1000 Dan Guyer and aBa Mbirika, GCD of sums of k consecutive Fibonacci, Lucas, and generalized Fibonacci numbers, Journal of Integer Sequences, 24 No.9, Article 21.9.8 (2021), 25pp; arXiv preprint, arXiv:2104.12262 [math.NT], 2021. Index entries for linear recurrences with constant coefficients, signature (0,0,0,3,0,1,0,-1,0,-3,0,0,0,1). FORMULA a(n) = 3*a(n-4) + a(n-6) - a(n-8) - 3*a(n-10) + a(n-14) for n > 14. - Giovanni Resta, Oct 04 2013 G.f.: x*(x^12 -x^11 +2*x^10 -5*x^9 -2*x^8 -x^7 -6*x^6 +x^5 -2*x^4 +5*x^3 +2*x^2 +x +1) / (-x^14 +3*x^10 +x^8 -x^6 -3*x^4 +1). - Colin Barker, Nov 09 2014 From Aba Mbirika, Jan 04 2022: (Start) a(n) = gcd(L(n+1)-1, L(n+2)-3). a(n) = Lcm_{A106291(m) divides n} m. Proofs of these formulas are given in Theorems 15 and 25 of the Guyer-Mbirika paper. (End) EXAMPLE a(3) = 2 because any sum of three consecutive Lucas numbers is an even number. a(4) = 5 because all sums of four consecutive Lucas numbers are divisible by 5. a(5) = 1 because some sums of five consecutive Lucas numbers are coprime. MATHEMATICA a[n_] := a[n] = If[n <= 14, {1, 1, 2, 5, 1, 4, 1, 15, 2, 11, 1, 40, 1, 29}[[n]], 3*a[n - 4] + a[n - 6] - a[n - 8] - 3*a[n - 10] + a[n - 14]]; Array[a, 64] (* Giovanni Resta, Oct 04 2013 *) CoefficientList[Series[(x^12 - x^11 + 2 x^10 - 5 x^9 - 2 x^8 - x^7 - 6 x^6 + x^5 - 2 x^4 + 5 x^3 + 2 x^2 + x + 1) / (-x^14 + 3 x^10 + x^8 - x^6 - 3 x^4 + 1), {x, 0, 40}], x] (* Vincenzo Librandi, Nov 09 2014 *) LinearRecurrence[{0, 0, 0, 3, 0, 1, 0, -1, 0, -3, 0, 0, 0, 1}, {1, 1, 2, 5, 1, 4, 1, 15, 2, 11, 1, 40, 1, 29}, 70] (* Harvey P. Dale, Jul 21 2021 *) Table[GCD[LucasL[n + 1] - 2, LucasL[n] + 1], {n, 0, 50}] (* Horst H. Manninger, Dec 25 2021 *) PROG (PARI) Vec(x*(x^12 -x^11 +2*x^10 -5*x^9 -2*x^8 -x^7 -6*x^6 +x^5 -2*x^4 +5*x^3 +2*x^2 +x +1) / (-x^14 +3*x^10 +x^8 -x^6 -3*x^4 +1) + O(x^100)) \\ Colin Barker, Nov 09 2014 CROSSREFS Cf. A210209, A022112, A022088, A022098, A106291 (Pisano periods of the Lucas sequence). Sequence in context: A105686 A316131 A153726 * A274880 A034005 A340407 Adjacent sequences: A229336 A229337 A229338 * A229340 A229341 A229342 KEYWORD nonn,easy AUTHOR Alonso del Arte, Sep 23 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 24 02:09 EDT 2024. Contains 374575 sequences. (Running on oeis4.)