Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #50 Feb 25 2018 09:52:15
%S 0,1,1,2,1,4,1,4,2,6,1,8,1,6,4,16,1,12,1,8,4,12,1,20,4,8,18,16,1,30,1,
%T 32,6,18,4,16,1,12,8,32,1,40,1,16,24,20,1,48,6,24,8,24,1,54,8,44,10,
%U 30,1,44,1,20,32,64,6,60,1,24,12,58,1,48,1,24,40,32,6,70,1,80,36,42,1,60,10,24,16,48,1,80,8,32,16,42,8
%N Euler totient function of the arithmetic derivative of n: a(n) = phi(n'), a(1) = 0.
%C a(1) = 0 by convention. - _Antti Karttunen_, Oct 30 2017
%H Antti Karttunen, <a href="/A229340/b229340.txt">Table of n, a(n) for n = 1..16384</a>
%F a(1) = 0; and for n > 1, a(n) = A000010(A003415(n)).
%e For n=4 phi(n')=phi(4')=phi(4)=2.
%e For n=7 phi(n')=phi(7')=phi(1)=1.
%t Array[EulerPhi@ If[Abs@ # < 2, 0, # Total[#2/#1 & @@@ FactorInteger[Abs@ #]]] &, 75] (* _Michael De Vlieger_, Oct 30 2017, after _Michael Somos_ at A003415 *)
%o (PARI) rd(n) = {local(fac); if(n<1, 0, fac=factor(n); sum(i=1, matsize(fac)[1], n*fac[i, 2]/fac[i, 1];));}
%o a(n) = eulerphi(rd(n)); \\ _Michel Marcus_, Sep 24 2013
%Y Cf. A000010, A003415.
%K nonn
%O 1,4
%A _Luca Brigada Villa_, Sep 24 2013
%E Description/formula clarified and more terms added by _Antti Karttunen_, Oct 30 2017