login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A173445
a(n) is the number of (0,1) - matrices of size (2n)by(13n) with row sum 13 and column sum 2.
1
1, 825043888527957000, 503273760207613155429966482419001606580000, 1672873154003101614626125868425197066981858431932863917477140065600000
OFFSET
1,2
REFERENCES
Gao, Shanzhen, and Matheis, Kenneth, Closed formulas and integer sequences arising from the enumeration of (0,1)-matrices with row sum two and some constant column sums. In Proceedings of the Forty-First Southeastern International Conference on Combinatorics, Graph Theory and Computing. Congr. Numer. 202 (2010), 45-53.
LINKS
FORMULA
a(n) = \frac{(13n)!}{2^{13n}}\sum_{r_{0} = 0}^{2n}\sum_{r_{1} = 0}^{2n - r_{0}}% \sum_{r_{2} = 0}^{2n - r_{0} - r_{1}}\sum_{r_{3} = 0}^{2n - r_{0} - r_{1} - r_{2}}% \sum_{r_{4} = 0}^{2n - r_{0} - r_{1} - r_{2} - r_{3}}% \sum_{r_{5} = 0}^{2n - r_{0} - r_{1} - r_{2} - r_{3} - r_{4}}\frac{(2n)!}{% r_{0}!r_{1}!r_{2}!r_{3}!r_{4}!r_{5}!(2n - r_{0} - r_{1} - r_{2} - r_{3} - r_{4} - r_{5})!% }\frac{( -1)^{ - 5r_{1} - 4r_{2} - 3r_{3} - 2r_{4} - r_{5} + 12n - 6r_{0}}}{% (13n + 5r_{1} + 4r_{2} + 3r_{3} + 2r_{4} + r_{5} - 12n + 6r_{0})!}$\bigskip $\frac{% (13r_{0} + 11r_{1} + 9r_{2} + 7r_{3} + 5r_{4} + 3r_{5} + (2n - r_{0} - r_{1} - r_{2} - r_{3} - r_{4} - r_{5}))!% }{% 13!^{r_{0}}11!^{r_{1}}(2!9!)^{r_{2}}(3!7!)^{r_{3}}(4!5!)^{r_{4}}(5!3!)^{r_{5}}6!^{2n - r_{0} - r_{1} - r_{2} - r_{3} - r_{4} - r_{5}}% }
a(n) ~ sqrt(Pi) * 13^(24*n + 1/2) * n^(26*n + 1/2) / (2^(7*n - 1) * 3^(10*n) * 5^(4*n) * 7^(2*n) * 11^(2*n) * exp(26*n + 6)). - Vaclav Kotesovec, Oct 27 2023
MATHEMATICA
Table[1/2^(13*n) * (13*n)! * Sum[((2*n)! * (-1)^(-5*r1 - 4*r2 - 3*r3 - 2*r4 - r5 + 12*n - 6*r0) * (13*r0 + 11*r1 + 9*r2 + 7*r3 + 5*r4 + 3*r5 + (2*n - r0 - r1 - r2 - r3 - r4 - r5))!) / ((r0! * r1! * r2! * r3! * r4! * r5! * (2*n - r0 - r1 - r2 - r3 - r4 - r5)!) * (13*n + 5*r1 + 4*r2 + 3*r3 + 2*r4 + r5 - 12*n + 6*r0)! * (13!^r0 * 11!^r1 * (2!*9!)^r2 * (3!*7!)^r3 * (4!*5!)^r4 * (5!*3!)^r5 * 6!^(2*n - r0 - r1 - r2 - r3 - r4 - r5))), {r0, 0, 2*n}, {r1, 0, 2*n - r0}, {r2, 0, 2*n - r0 - r1}, {r3, 0, 2*n - r0 - r1 - r2}, {r4, 0, 2*n - r0 - r1 - r2 - r3}, {r5, 0, 2*n - r0 - r1 - r2 - r3 - r4}], {n, 1, 6}] (* Vaclav Kotesovec, Oct 23 2023 *)
CROSSREFS
Sequence in context: A172546 A374949 A256312 * A281390 A281301 A286481
KEYWORD
nonn
AUTHOR
Shanzhen Gao, Feb 18 2010
STATUS
approved