login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) is the number of (0,1) - matrices of size (2n)by(13n) with row sum 13 and column sum 2.
1

%I #14 Oct 27 2023 04:32:25

%S 1,825043888527957000,503273760207613155429966482419001606580000,

%T 1672873154003101614626125868425197066981858431932863917477140065600000

%N a(n) is the number of (0,1) - matrices of size (2n)by(13n) with row sum 13 and column sum 2.

%D Gao, Shanzhen, and Matheis, Kenneth, Closed formulas and integer sequences arising from the enumeration of (0,1)-matrices with row sum two and some constant column sums. In Proceedings of the Forty-First Southeastern International Conference on Combinatorics, Graph Theory and Computing. Congr. Numer. 202 (2010), 45-53.

%H Vaclav Kotesovec, <a href="/A173445/b173445.txt">Table of n, a(n) for n = 1..25</a>

%F a(n) = \frac{(13n)!}{2^{13n}}\sum_{r_{0} = 0}^{2n}\sum_{r_{1} = 0}^{2n - r_{0}}% \sum_{r_{2} = 0}^{2n - r_{0} - r_{1}}\sum_{r_{3} = 0}^{2n - r_{0} - r_{1} - r_{2}}% \sum_{r_{4} = 0}^{2n - r_{0} - r_{1} - r_{2} - r_{3}}% \sum_{r_{5} = 0}^{2n - r_{0} - r_{1} - r_{2} - r_{3} - r_{4}}\frac{(2n)!}{% r_{0}!r_{1}!r_{2}!r_{3}!r_{4}!r_{5}!(2n - r_{0} - r_{1} - r_{2} - r_{3} - r_{4} - r_{5})!% }\frac{( -1)^{ - 5r_{1} - 4r_{2} - 3r_{3} - 2r_{4} - r_{5} + 12n - 6r_{0}}}{% (13n + 5r_{1} + 4r_{2} + 3r_{3} + 2r_{4} + r_{5} - 12n + 6r_{0})!}$\bigskip $\frac{% (13r_{0} + 11r_{1} + 9r_{2} + 7r_{3} + 5r_{4} + 3r_{5} + (2n - r_{0} - r_{1} - r_{2} - r_{3} - r_{4} - r_{5}))!% }{% 13!^{r_{0}}11!^{r_{1}}(2!9!)^{r_{2}}(3!7!)^{r_{3}}(4!5!)^{r_{4}}(5!3!)^{r_{5}}6!^{2n - r_{0} - r_{1} - r_{2} - r_{3} - r_{4} - r_{5}}% }

%F a(n) ~ sqrt(Pi) * 13^(24*n + 1/2) * n^(26*n + 1/2) / (2^(7*n - 1) * 3^(10*n) * 5^(4*n) * 7^(2*n) * 11^(2*n) * exp(26*n + 6)). - _Vaclav Kotesovec_, Oct 27 2023

%t Table[1/2^(13*n) * (13*n)! * Sum[((2*n)! * (-1)^(-5*r1 - 4*r2 - 3*r3 - 2*r4 - r5 + 12*n - 6*r0) * (13*r0 + 11*r1 + 9*r2 + 7*r3 + 5*r4 + 3*r5 + (2*n - r0 - r1 - r2 - r3 - r4 - r5))!) / ((r0! * r1! * r2! * r3! * r4! * r5! * (2*n - r0 - r1 - r2 - r3 - r4 - r5)!) * (13*n + 5*r1 + 4*r2 + 3*r3 + 2*r4 + r5 - 12*n + 6*r0)! * (13!^r0 * 11!^r1 * (2!*9!)^r2 * (3!*7!)^r3 * (4!*5!)^r4 * (5!*3!)^r5 * 6!^(2*n - r0 - r1 - r2 - r3 - r4 - r5))), {r0, 0, 2*n}, {r1, 0, 2*n - r0}, {r2, 0, 2*n - r0 - r1}, {r3, 0, 2*n - r0 - r1 - r2}, {r4, 0, 2*n - r0 - r1 - r2 - r3}, {r5, 0, 2*n - r0 - r1 - r2 - r3 - r4}], {n, 1, 6}] (* _Vaclav Kotesovec_, Oct 23 2023 *)

%K nonn

%O 1,2

%A _Shanzhen Gao_, Feb 18 2010