login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A352900
a(n) is the number of different ways to partition the set of vertices of a convex n-gon into intersecting polygons.
0
0, 0, 0, 7, 28, 79, 460, 2486, 11209, 59787, 361777, 2167635, 13577211, 91919186, 650059294, 4761980740, 36508824672, 292116858616, 2424047807182, 20847409357919, 185754041370693, 1711253802075941, 16272637412753211, 159561718074359537, 1611599794862761838, 16747401536440092104
OFFSET
3,4
FORMULA
a(n) = A006505(n) - A114997(n).
a(n) = Sum_{k=2..floor(n/3)} (T(n,k) - C(n+1,k)*C(n-2k-1,k-1)/(n+1)); n > 5, where T(n,k) = k*T(n-1,k) + C(n-1,2)*T(n-3,k-1); n > 5 and 1 < k <= floor(n/3), T(n,k) = 1 when k = 1.
T(n,k) = A059022(n,k) is the number of different ways to partition the set of vertices of a convex n-gon into k polygons.
EXAMPLE
For n=6, there are a(6) = 7 intersecting partitions of the convex hexagon. On vertices 1..6, they are the following pairs of triangles:
{1,3,4}{5,6,2}
{4,5,1}{2,3,6}
{3,4,6}{1,2,5}
{2,3,5}{1,4,6}
{1,2,4}{5,6,3}
{1,6,3}{5,4,2}
{1,3,5}{2,4,6}
PROG
(PARI) T2(n, k) = if (n<3, 0, if (k==1, 1, k*T2(n-1, k) + binomial(n-1, 2)*T2(n-3, k-1))); \\ A059022
a5(n) = if (n<3, n==0, sum(k=1, n\3, T2(n, k))); \\ A006505
a7(n) = sum(k=ceil((n+3)/2), n, (1/(n+1) * binomial(n+1, k) * binomial(2*k-n-3, n-k)) ); \\ A114997
a(n) = a5(n) - a7(n); \\ Michel Marcus, Apr 09 2022
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Janaka Rodrigo, Apr 07 2022
EXTENSIONS
More terms from Michel Marcus, Apr 09 2022
STATUS
approved