login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) is the number of different ways to partition the set of vertices of a convex n-gon into intersecting polygons.
0

%I #50 Apr 21 2022 14:01:21

%S 0,0,0,7,28,79,460,2486,11209,59787,361777,2167635,13577211,91919186,

%T 650059294,4761980740,36508824672,292116858616,2424047807182,

%U 20847409357919,185754041370693,1711253802075941,16272637412753211,159561718074359537,1611599794862761838,16747401536440092104

%N a(n) is the number of different ways to partition the set of vertices of a convex n-gon into intersecting polygons.

%F a(n) = A006505(n) - A114997(n).

%F a(n) = Sum_{k=2..floor(n/3)} (T(n,k) - C(n+1,k)*C(n-2k-1,k-1)/(n+1)); n > 5, where T(n,k) = k*T(n-1,k) + C(n-1,2)*T(n-3,k-1); n > 5 and 1 < k <= floor(n/3), T(n,k) = 1 when k = 1.

%F T(n,k) = A059022(n,k) is the number of different ways to partition the set of vertices of a convex n-gon into k polygons.

%e For n=6, there are a(6) = 7 intersecting partitions of the convex hexagon. On vertices 1..6, they are the following pairs of triangles:

%e {1,3,4}{5,6,2}

%e {4,5,1}{2,3,6}

%e {3,4,6}{1,2,5}

%e {2,3,5}{1,4,6}

%e {1,2,4}{5,6,3}

%e {1,6,3}{5,4,2}

%e {1,3,5}{2,4,6}

%o (PARI) T2(n,k) = if (n<3, 0, if (k==1, 1, k*T2(n-1,k) + binomial(n-1,2)*T2(n-3,k-1))); \\ A059022

%o a5(n) = if (n<3, n==0, sum(k=1, n\3, T2(n,k))); \\ A006505

%o a7(n) = sum(k=ceil((n+3)/2), n, (1/(n+1) * binomial(n+1, k) * binomial(2*k-n-3, n-k)) ); \\ A114997

%o a(n) = a5(n) - a7(n); \\ _Michel Marcus_, Apr 09 2022

%Y Cf. A006505, A114997, A059022, A350248.

%K nonn,more

%O 3,4

%A _Janaka Rodrigo_, Apr 07 2022

%E More terms from _Michel Marcus_, Apr 09 2022