login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A352902
a(0) = 1; a(n) = Sum_{k=0..floor(n/4)} binomial(n+1,4*k+1) * a(k).
1
1, 2, 3, 4, 7, 18, 49, 120, 264, 544, 1100, 2256, 4736, 10080, 21456, 45312, 94850, 197412, 410134, 852968, 1778382, 3719364, 7806338, 16451280, 34835184, 74164800, 158854536, 342478432, 743432288, 1625079936, 3576582592, 7922065408, 17648409603
OFFSET
0,2
COMMENTS
Self-convolution of A351971.
FORMULA
G.f. A(x) satisfies: A(x) = A(x^4/(1 - x)^4) / (1 - x)^2.
E.g.f.: d/dx ( exp(x) * Sum_{n>=0} a(n) * x^(4*n+1) / (4*n+1)! ).
MATHEMATICA
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n + 1, 4 k + 1] a[k], {k, 0, Floor[n/4]}]; Table[a[n], {n, 0, 32}]
nmax = 32; A[_] = 1; Do[A[x_] = A[x^4/(1 - x)^4]/(1 - x)^2 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Apr 07 2022
STATUS
approved