OFFSET
0,2
FORMULA
G.f.: (1-x-x^4)/((1-x-x^4)^2 - 4*x^5)^(3/2).
D-finite with recurrence 4*n*(2*n-3)*a(n) +(-22*n^2+43*n-13)*a(n-1) +2*(10*n^2-26*n+15)*a(n-2) -3*(n-1)*(2*n-5)*a(n-3) +8*(-2*n^2-n+16)*a(n-4) +2*(-2*n^2-23*n-15)*a(n-5) +12*(n-1)^2*a(n-6) +4*n*(2*n+5)*a(n-8) -3*(2*n+1)*(n-1)*a(n-9)=0. - R. J. Mathar, Oct 17 2024
PROG
(PARI) a(n) = sum(k=0, n\4, (n-3*k+1)*binomial(n-3*k, k)^2);
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Oct 17 2024
STATUS
approved