OFFSET
0,2
FORMULA
G.f.: (1-x-x^3)/((1-x-x^3)^2 - 4*x^4)^(3/2).
D-finite with recurrence 3*n*(n-1)*a(n) -(8*n-3)*(n-1)*a(n-1) +(7*n^2-14*n+8)*a(n-2) +(-8*n^2+3*n+23)*a(n-3) -2*n*(n+8)*a(n-4) +4*((n-1)^2)*a(n-5) +3*n*(n+2)*a(n-6) -2*n*(n-1)*a(n-7)=0. - R. J. Mathar, Oct 17 2024
MAPLE
A375565 := proc(n)
add((n-2*k+1)*binomial(n-2*k, k)^2, k=0..floor(n/3)) ;
end proc:
seq(A375565(n), n=0..80) ; # R. J. Mathar, Oct 17 2024
PROG
(PARI) a(n) = sum(k=0, n\3, (n-2*k+1)*binomial(n-2*k, k)^2);
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Oct 17 2024
STATUS
approved