login
A352904
a(0) = 1; a(n) = Sum_{k=0..floor((n-1)/4)} binomial(n,4*k+1) * a(k).
1
1, 1, 2, 3, 4, 6, 12, 28, 64, 137, 282, 583, 1244, 2733, 6062, 13343, 28944, 61969, 131602, 278483, 588564, 1242646, 2618924, 5505556, 11542528, 24142217, 50409898, 105154719, 219278860, 457362189, 954629598, 1994940799, 4175986720, 8760742945, 18428667938
OFFSET
0,3
FORMULA
G.f. A(x) satisfies: A(x) = 1 + x * A(x^4/(1 - x)^4) / (1 - x)^2.
E.g.f.: 1 + exp(x) * Sum_{n>=0} a(n) * x^(4*n+1) / (4*n+1)!.
MATHEMATICA
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, 4 k + 1] a[k], {k, 0, Floor[(n - 1)/4]}]; Table[a[n], {n, 0, 34}]
nmax = 34; A[_] = 0; Do[A[x_] = 1 + x A[x^4/(1 - x)^4]/(1 - x)^2 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Apr 07 2022
STATUS
approved