OFFSET
1,6
COMMENTS
Also counts sequences of n natural numbers, excluding 1 and 2, such that the sum of every prefix is no more than its length.
a(n) is the number of Dyck paths of semilength n with all ascents of length >= 3. For example, a(6) = 4 counts U^6.D^6, U^3.D.U^3.D^5, U^3.D^2.U^3.D^4, U^3.D^3.U^3.D^3 where ^ denotes repetition and a dot denotes concatenation. - David Callan, Dec 08 2021
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Andrei Asinowski, Axel Bacher, Cyril Banderier, Bernhard Gittenberger, Analytic combinatorics of lattice paths with forbidden patterns, the vectorial kernel method, and generating functions for pushdown automata, Laboratoire d'Informatique de Paris Nord (LIPN 2019).
Nachum Dershowitz and Shmuel Zaks, More patterns in trees: Up and down, young and old, odd and even, SIAM J. Discrete Mathematics, 23 (2009), 447-465.
FORMULA
a(n) = Sum_{(n+3)/2 <= k <= n} (1/(n+1) * binomial(n+1, k) * binomial(2*k-n-3, n-k)).
If A(x) is the g.f. for the sequence with a(0)=1, then x^3*A^3+x*A^2-(1 + x)*A+1 = 0. - Emeric Deutsch, Jan 13 2015
Let A(x) be the g.f. for the sequence with a(0)=1, then x*A(x) is the reversion of x/(1+x^2*sum(k>=1,x^k)). - Joerg Arndt, Aug 19 2012 (proved by Emeric Deutsch, Jan 13 2015)
Recurrence: (n+1)*(n+2)*(28*n^2 - 38*n - 15)*a(n) = -4*(n+1)*(14*n^3 - 12*n^2 + 7*n - 15)*a(n-1) + (n-2)*(140*n^3 + 90*n^2 - 221*n + 45)*a(n-2) + 6*(n-2)*(28*n^3 - 24*n^2 - 75*n + 95)*a(n-3) + 23*(n-3)*(n-2)*(28*n^2 + 18*n - 25)*a(n-4). - Vaclav Kotesovec, Mar 22 2014
a(n) ~ c / (n^(3/2) * r^n), where r = (4*sqrt(2) - 3 + 23*sqrt((344*sqrt(2))/529 - 235/529))/46 = 0.402505948621022106992... is the root of the equation 23*r^4+6*r^3+5*r^2-2*r-1 = 0 and c = sqrt((280 + 133*sqrt(2) - 25*sqrt(14*(11 + 8*sqrt(2)))) / (7*Pi))/4 = 0.273007516... - Vaclav Kotesovec, Mar 22 2014, updated Jan 14 2015
MAPLE
eq := x^3*A^3+x*A^2-(1+x)*A+1 = 0: A := RootOf(eq, A): Aser := series(A, x = 0, 40): seq(coeff(Aser, x, n), n = 1 .. 38); # Emeric Deutsch, Jan 13 2015
MATHEMATICA
Table[Sum[1/(n+1)*Binomial[n+1, k]*Binomial[2*k-n-3, n-k], {k, Ceiling[(n+3)/2], n}], {n, 1, 20}] (* Vaclav Kotesovec, Mar 22 2014 *)
PROG
(PARI) a(n)=sum(k=ceil((n+3)/2), n, (1/(n+1) * binomial(n+1, k) * binomial(2*k-n-3, n-k)) ); \\ Joerg Arndt, Aug 19 2012
(PARI) N=66; gf=serreverse(x/(1+x^2*sum(k=1, N, x^k))+O(x^N)) / x;
/* = 1 + x^3 + x^4 + x^5 + 4*x^6 + 8*x^7 + 13*x^8 + 31*x^9 + ... */
v114997=Vec(gf) /* = [1, 0, 0, 1, 1, 1, 4, 8, 13, 31, ...] */ \\ Joerg Arndt, Aug 19 2012
CROSSREFS
KEYWORD
nonn
AUTHOR
Nachum Dershowitz, Feb 23 2006
EXTENSIONS
Offset set to 1 by Joerg Arndt, Aug 19 2012
STATUS
approved