Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Aug 05 2017 11:29:53
%S 1,1,1,3,3,1,1,1,3,1,2,4,6,2,6,2,1,2,5,5,2,1,2,3,5,3,1,6,1,1,8,2,4,7,
%T 1,9,3,2,9,7,5,10,4,5,1,5,5,1,1,1,8,1,1,4,6,2,1,2,12,10,1,11,8,3,11,2,
%U 2,1,4,1,7,2,3,2,11,2,3,3,3,1,1,5,2,5,1,7,3,3,4,6,4,7,4,1,9,5,3,2,4,7,2,9,2
%N a(n) is the minimal number m that makes 2*prime(n)+prime(n+m) a prime.
%H Reinhard Zumkeller, <a href="/A114266/b114266.txt">Table of n, a(n) for n = 1..10000</a>
%e n=1: 2*prime(1)+prime(1+1)=2*2+3=7 is prime, so a(1)=1;
%e n=2: 2*prime(2)+prime(2+1)=2*3+5=11 is prime, so a(2)=1;
%e ...
%e n=4: 2*prime(4)+prime(4+1)=2*7+11=25 is not prime
%e ...
%e 2*prime(4)+prime(4+3)=2*7+17=31 is prime, so a(4)=3.
%t Table[p1 = Prime[n1]; n2 = 1; p2 = Prime[n1 + n2]; While[cp = 2*p1 + p2; ! PrimeQ[cp], n2++; p2 = Prime[n1 + n2]]; n2, {n1, 1, 200}]
%t mnm[n_]:=Module[{m=1,p=2Prime[n]},While[!PrimeQ[p+Prime[n+m]],m++];m]; Array[mnm,110] (* _Harvey P. Dale_, Aug 05 2017 *)
%o (Haskell)
%o a114266 n = head [m | m <- [1..],
%o a010051 (2 * a000040 n + a000040 (n + m)) == 1]
%o -- _Reinhard Zumkeller_, Oct 29 2013
%Y Cf. A114227, A114230, A073703, A114235, A114262, A114228, A114231, A114233, A114236, A114263, A114265, A114267.
%Y Cf. A000040, A010051.
%K easy,nonn
%O 1,4
%A _Lei Zhou_, Nov 20 2005
%E Edited definition to conform to OEIS style. - _N. J. A. Sloane_, Jan 08 2011