login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A114265
Smallest prime p greater than prime(n) such that 2*prime(n) + p is a prime.
3
3, 5, 7, 17, 19, 17, 19, 23, 37, 31, 41, 53, 67, 53, 73, 61, 61, 71, 89, 97, 83, 83, 97, 103, 113, 109, 107, 139, 113, 127, 167, 139, 157, 179, 151, 197, 173, 173, 223, 211, 199, 239, 211, 227, 199, 233, 239, 227, 229, 233, 277, 241, 251, 271, 283, 271, 271, 281
OFFSET
1,1
COMMENTS
Note that p is next prime after prime(n) iff prime(n) is a term in A173971. - Zak Seidov, Feb 11 2015
LINKS
EXAMPLE
n=1: 2*prime[1]+3=2*2+3=7 is prime, so a(1)=3;
n=2: 2*prime[2]+5=2*3+5=11 is prime, so a(2)=5;
...
n=4: 2*prime[4]+3=2*7+3=17 is prime, so a(4)=17.
MATHEMATICA
Table[p1 = Prime[n1]; n2 = 1; p2 = Prime[n1 + n2]; While[cp = 2*p1 + p2; ! PrimeQ[cp], n2++; p2 = Prime[n1 + n2]]; p2, {n1, 1, 200}]
PROG
(Haskell)
a114265 n = head [p | let (q:qs) = drop (n - 1) a000040_list, p <- qs,
a010051 (2 * q + p) == 1]
-- Reinhard Zumkeller, Oct 31 2013
(PARI) a(n)=forprime(p=prime(n)+1, , if(isprime(2*prime(n)+p), return(p)))
vector(100, n, a(n)) \\ Derek Orr, Feb 11 2015
KEYWORD
easy,nonn
AUTHOR
Lei Zhou, Nov 20 2005
EXTENSIONS
Edited definition to conform to OEIS style. - Reinhard Zumkeller, Oct 31 2013
STATUS
approved