

A248144


Least positive integer m such that m + n divides p(m*n), where p(.) is the partition function given by A000041.


3



4, 5, 3, 1, 2, 14, 2, 10, 1, 4, 17, 5, 9, 1, 1, 6, 4, 10, 16, 357, 1, 197, 14, 1, 3, 9, 6, 1123, 15, 93, 4, 1, 8, 46, 77, 99, 18, 53, 10, 76, 4, 2, 15, 152, 4, 3, 10, 29, 6, 12, 4, 1, 25, 1, 252, 64, 106, 11, 11, 136
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Conjecture: a(n) exists for any n > 0.


LINKS



EXAMPLE

a(6) = 14 since 6 + 14 = 20 divides p(6*14) = 26543660.


MATHEMATICA

Do[m=1; Label[aa]; If[Mod[PartitionsP[m*n], m+n]==0, Print[n, " ", m]; Goto[bb]]; m=m+1; Goto[aa]; Label[bb]; Continue, {n, 1, 60}]


CROSSREFS



KEYWORD

nonn


AUTHOR



STATUS

approved



