

A248143


Least integer m > 0 such that m + n divides p(m) + p(n), where p(.) is the partition function given by A000041.


3



1, 1, 1, 61, 13, 7, 1, 25, 109, 41, 60, 1, 5, 24, 18, 6, 3, 7, 38, 12, 86, 31, 18, 14, 8, 96, 470, 2, 37, 245, 8, 6, 37, 2, 20, 137, 3, 19, 24, 63, 10, 99, 52, 32, 16, 638, 15, 20, 61, 45, 288, 43, 52, 12, 371, 123, 94, 8, 483, 11
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,4


COMMENTS

Conjecture: a(n) exists for any n > 0.


LINKS



EXAMPLE

a(5) = 13 since 5 + 13 = 18 divides p(5) + p(13) = 7 + 101 = 108.


MATHEMATICA

Do[m=1; Label[aa]; If[Mod[PartitionsP[m]+PartitionsP[n], m+n]==0, Print[n, " ", m]; Goto[bb]]; m=m+1; Goto[aa]; Label[bb]; Continue, {n, 1, 60}]


CROSSREFS

Cf. A000041, A247824, A247937, A247940, A248124, A248125, A248133, A248136, A248137, A248139, A248142, A248144.


KEYWORD

nonn


AUTHOR



STATUS

approved



