login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A248145
Consider the partition of the positive odd integers into minimal blocks such that concatenation of numbers in each block is a number of the form 3^k*prime, k>=0. Sequence lists numbers of odd integers in the blocks.
4
2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 3, 1, 1, 2, 1, 1, 1, 7, 1, 1, 1, 2, 1, 1, 1, 2, 6, 1, 5, 11, 7, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 348, 2, 20, 30, 453, 2, 1, 2, 3, 17, 1, 219, 1, 2, 4, 10, 1, 2, 1, 1, 46, 1303, 4, 2, 1, 2, 2, 1
OFFSET
1,1
COMMENTS
3^m, m>=1, is of the considered form 3^k*prime, k=m-1>=0, prime=3.
The first blocks of the partition are |1,3|,|5|,|7|,|9|,|11|,|13|,|15|,|17|,|19|,|21|,|23|,|25,27,29|,|31|,|33|,|35,37|,...
EXAMPLE
The 12th block of partition is |25,27,29|, since we have 25=5^2, 2527=7*19^2, 252729=3^2*28081, and only the last number is of the required form. So a(12)=3.
PROG
(Python)
from gmpy2 import is_prime
from itertools import count, islice
def c(n):
if n < 3: return False
while n%3 == 0: n //= 3
return n == 1 or is_prime(n)
def agen(): # generator of terms
i = 1
while True:
s, an = str(i), 1
while not c(t:=int(s)): i += 2; s += str(i); an += 1
yield an
i += 2
print(list(islice(agen(), 78))) # Michael S. Branicky, Oct 05 2024
CROSSREFS
Sequence in context: A069347 A161606 A300362 * A171398 A113607 A351352
KEYWORD
nonn,base
AUTHOR
Vladimir Shevelev, Oct 02 2014
EXTENSIONS
a(43) and beyond from Michael S. Branicky, Oct 05 2024
STATUS
approved