login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A161606
a(n) = gcd(A008472(n), A001222(n)).
2
0, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 3, 1, 1, 1, 1, 1, 5, 1, 1, 2, 3, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 5, 1, 1, 1, 3, 2, 3, 1, 1, 1, 1, 1, 4, 2, 1, 2, 1, 1, 2, 2, 1, 2, 1, 2, 1, 1, 3, 1, 1, 1, 1, 1, 1, 3
OFFSET
1,4
LINKS
EXAMPLE
28 has a prime-factorization of: 2^2 * 7^1. The sum of the distinct primes dividing 28 is 2+7 = 9. The sum of the exponents in the prime-factorization of 28 is 2+1 = 3. a(28) therefore equals gcd(9,3) = 3.
MAPLE
A008472 := proc(n) if n = 1 then 0 ; else add(p, p= numtheory[factorset](n)) ; end if ; end proc:
A161606 := proc(n) igcd(A008472(n), numtheory[bigomega](n)) ; end proc:
seq(A161606(n), n=2..80) ; # R. J. Mathar, Jul 08 2011
MATHEMATICA
Table[GCD[DivisorSum[n, # &, PrimeQ], PrimeOmega@ n], {n, 105}] (* Michael De Vlieger, Jul 20 2017 *)
PROG
(Scheme) (define (A161606 n) (gcd (A001222 n) (A008472 n))) ;; Antti Karttunen, Jul 20 2017
(Python)
from sympy import primefactors, gcd
def a001222(n): return 0 if n==1 else a001222(n//primefactors(n)[-1]) + 1
def a(n): return gcd(sum(primefactors(n)), a001222(n))
print([a(n) for n in range(1, 151)]) # Indranil Ghosh, Jul 20 2017
CROSSREFS
Sequence in context: A372467 A367419 A069347 * A300362 A248145 A171398
KEYWORD
nonn
AUTHOR
Leroy Quet, Jun 14 2009
EXTENSIONS
Term a(1)=0 prepended and more terms computed by Antti Karttunen, Jul 20 2017
STATUS
approved