login
A367419
a(n) = sqrt(A367418(n)).
3
1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 3, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1
OFFSET
1,7
LINKS
Michael De Vlieger, Plot f(a(n)) at (x,y) = (n mod m, floor(n/m)) for m = 857 and n = 734449, where f is a color function such that 1 = gray, red indicates primes, gold composite prime powers, green squarefree composites, blue and purple numbers neither squarefree nor prime powers, but purple additionally represents squareful numbers that are not prime powers.
FORMULA
a(n) = sqrt(A003557(A268335(n))) = sqrt(A268335(n)/A367417(n)).
a(n) = A268335(n)/A367407(n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 1/A065463 = 1.41956288050548591931... . - Amiram Eldar, Nov 17 2023
MATHEMATICA
s[n_] := Sqrt[n / Times @@ FactorInteger[n][[;; , 1]]]; s /@ Select[Range[200], AllTrue[FactorInteger[#][[;; , 2]], OddQ] &]
PROG
(PARI) b(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 2]%2, f[i, 1]^(f[i, 2]-1), 0)); }
lista(kmax) = {my(b1); for(k = 1, kmax, b1 = b(k); if(b1 > 0, print1(sqrtint(b1), ", "))); }
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Amiram Eldar, Nov 17 2023
STATUS
approved