login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A367416
Triangle read by rows: T(n,k) = number of solutions to +- 1^k +- 2^k +- 3^k +- ... +- n^k is a k-th power, n >= 2.
0
4, 8, 1, 16, 1, 32, 0, 2, 64, 6, 128, 8, 256, 16, 4, 512, 26, 1024, 17, 10, 2048, 67, 4, 3, 4096, 100, 10, 8192, 137, 34, 6, 16384, 426, 28, 1, 32768, 661, 96, 6, 65536, 1351, 146, 16, 8, 131072, 2637, 230, 15, 262144, 3831, 258, 40, 524288, 8095, 1130, 50
OFFSET
2,1
COMMENTS
In the case of n = 1, there are solutions for all k. In particular, 1^k is always a k-th power and -(1^k) is a k-th power for odd k. As a formula: T(1,k) = 1 + (k mod 2). This row is not included in the sequence.
EXAMPLE
Triangle begins:
k = 1 2 3 4 5
n= 2: 4;
n= 3: 8, 1;
n= 4: 16, 1;
n= 5: 32, 0, 2;
n= 6: 64, 6;
n= 7: 128, 8;
n= 8: 256, 16, 4;
n= 9: 512, 26;
n=10: 1024, 17, 10;
n=11: 2048, 67, 4, 3;
n=12: 4096, 100, 10;
n=13: 8192, 137, 34, 6;
n=14: 16384, 426, 28, 1;
n=15: 32768, 661, 96, 6;
n=16: 65536, 1351, 146, 16, 8;
n=17: 131072, 2637, 230, 15;
n=18: 262144, 3831, 258, 40;
n=19: 524288, 8095, 1130, 50;
n=20: 1048576, 15241, 854, 77, 6;
...
The T(6,2) = 6 solutions are:
- 1^2 - 2^2 + 3^2 - 4^2 + 5^2 + 6^2 = 49 = 7^2,
- 1^2 - 2^2 + 3^2 + 4^2 + 5^2 - 6^2 = 9 = 3^2,
- 1^2 - 2^2 + 3^2 + 4^2 + 5^2 + 6^2 = 81 = 9^2,
+ 1^2 - 2^2 + 3^2 - 4^2 - 5^2 + 6^2 = 1 = 1^2,
+ 1^2 + 2^2 - 3^2 + 4^2 + 5^2 - 6^2 = 1 = 1^2,
+ 1^2 + 2^2 + 3^2 - 4^2 - 5^2 + 6^2 = 9 = 3^2.
PROG
(PARI)f(k, u)=my(x=0, v=vector(#u)); for(i=1, #u, u[i]=if(u[i]==0, -1, 1); v[i]=i^k); u*v~
is(k, u)=my(x=f(k, u)); ispower(x, k)
T(n, k)=my(u=vector(n, i, [0, 1]), nbsol=0); if(k%2==1, u[1]=[1, 1]); forvec(X=u, if(is(k, X), nbsol++)); if(k%2==1, nbsol*=2); nbsol
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Jean-Marc Rebert, Jan 26 2024
STATUS
approved