login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A328250
Square array A(n,k) read by descending antidiagonals where A(n,k) is the k-th solution x to A328248(x) = n-1.
6
4, 8, 1, 12, 2, 9, 16, 3, 18, 50, 20, 5, 25, 99, 306, 24, 6, 45, 125, 549, 5831, 27, 7, 49, 207, 1611, 6849, 20230, 28, 10, 63, 343, 2662, 14225, 33026, 52283, 32, 11, 75, 375, 2842, 16299, 47107, 225998, 286891, 36, 13, 90, 531, 2891, 19431, 49806, 1336047, 1292750, 10820131, 40, 14, 98, 686, 4575, 21231, 117649, 1422275, 2886982, 21628098, 38452606
OFFSET
1,1
COMMENTS
Row 1 of the array is reserved for numbers for which no squarefree number is ever reached, and from then on, each row n > 1 of array gives in ascending order all natural numbers that require n-2 iterations of arithmetic derivative (A003415) to reach a squarefree number. Squarefree numbers (A005117) thus occupy the row 2, as they require no iterations.
EXAMPLE
The upper left corner of the array:
4, 8, 12, 16, 20, 24, 27, 28,
1, 2, 3, 5, 6, 7, 10, 11,
9, 18, 25, 45, 49, 63, 75, 90,
50, 99, 125, 207, 343, 375, 531, 686,
306, 549, 1611, 2662, 2842, 2891, 4575, 4802,
5831, 6849, 14225, 16299, 19431, 21231, 22638, 24010,
20230, 33026, 47107, 49806, 117649, 121671, 145386, 162707,
52283, 225998, 1336047, 1422275, 1500759, 1576899, 2309503, 3023398,
286891, 1292750, 2886982, 3137526, 6882453, 8703459, 15358457, 16777114,
10820131, 21628098, 23934105, 24332763, 46295435, 51320698, 52320191, 56199375,
38452606, ...
...
PROG
(PARI)
up_to = 45; \\ 10585 = binomial(145+1, 2)
A003415checked(n) = if(n<=1, 0, my(f=factor(n), s=0); for(i=1, #f~, if(f[i, 2]>=f[i, 1], return(0), s += f[i, 2]/f[i, 1])); (n*s));
A328248(n) = { my(k=1); while(n && !issquarefree(n), k++; n = A003415checked(n)); (!!n*k); };
memoA328250sq = Map();
A328250sq(n, k) = { my(v=0); if(!mapisdefined(memoA328250sq, [n, k-1], &v), if(1==k, v=0, v = A328250sq(n, k-1))); for(i=1+v, oo, if((1+A328248(i))==n, mapput(memoA328250sq, [n, k], i); return(i))); };
A328250list(up_to) = { my(v = vector(up_to), i=0); for(a=1, oo, for(col=1, a, i++; if(i > up_to, return(v)); v[i] = A328250sq(col, (a-(col-1))))); (v); };
v328250 = A328250list(up_to);
A328250(n) = v328250[n];
CROSSREFS
Column 1: A328302.
Rows 1 - 4 are: A328251, A005117, A328252, A328253.
Sequence in context: A196618 A294830 A248415 * A340423 A367416 A295086
KEYWORD
nonn,tabl
AUTHOR
Antti Karttunen, Oct 12 2019
STATUS
approved