login
A328252
Numbers that are not squarefree, but whose arithmetic derivative (A003415) is.
9
9, 18, 25, 45, 49, 63, 75, 90, 98, 117, 121, 126, 147, 150, 153, 169, 171, 175, 198, 234, 242, 245, 261, 279, 289, 294, 315, 325, 333, 338, 342, 350, 361, 363, 369, 387, 414, 423, 425, 450, 475, 477, 490, 495, 507, 522, 529, 539, 550, 558, 575, 578, 603, 605, 630, 637, 639, 650, 657, 666, 711, 722, 726, 735, 738, 774, 775, 801
OFFSET
1,1
LINKS
EXAMPLE
18 = 2 * 3^2 is not squarefree, but its arithmetic derivative A003415(18) = 21 = 3*7 is, thus 18 is included in this sequence.
PROG
(PARI)
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
isA328252(n) = (!issquarefree(n) && issquarefree(A003415(n)));
(PARI)
A003415checked(n) = if(n<=1, 0, my(f=factor(n), s=0); for(i=1, #f~, if(f[i, 2]>=f[i, 1], return(0), s += f[i, 2]/f[i, 1])); (n*s));
A328248(n) = { my(k=1); while(n && !issquarefree(n), k++; n = A003415checked(n)); (!!n*k); };
isA328252(n) = (2==A328248(n));
CROSSREFS
Row 3 of array A328250. Positions of 2's in A328248.
Setwise difference A328234 \ A005117. Intersection of A013929 and A328234.
Sequence in context: A072502 A195268 A371083 * A227279 A102042 A332551
KEYWORD
nonn
AUTHOR
Antti Karttunen, Oct 11 2019
STATUS
approved