login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A328252
Numbers that are not squarefree, but whose arithmetic derivative (A003415) is.
9
9, 18, 25, 45, 49, 63, 75, 90, 98, 117, 121, 126, 147, 150, 153, 169, 171, 175, 198, 234, 242, 245, 261, 279, 289, 294, 315, 325, 333, 338, 342, 350, 361, 363, 369, 387, 414, 423, 425, 450, 475, 477, 490, 495, 507, 522, 529, 539, 550, 558, 575, 578, 603, 605, 630, 637, 639, 650, 657, 666, 711, 722, 726, 735, 738, 774, 775, 801
OFFSET
1,1
LINKS
EXAMPLE
18 = 2 * 3^2 is not squarefree, but its arithmetic derivative A003415(18) = 21 = 3*7 is, thus 18 is included in this sequence.
PROG
(PARI)
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
isA328252(n) = (!issquarefree(n) && issquarefree(A003415(n)));
(PARI)
A003415checked(n) = if(n<=1, 0, my(f=factor(n), s=0); for(i=1, #f~, if(f[i, 2]>=f[i, 1], return(0), s += f[i, 2]/f[i, 1])); (n*s));
A328248(n) = { my(k=1); while(n && !issquarefree(n), k++; n = A003415checked(n)); (!!n*k); };
isA328252(n) = (2==A328248(n));
CROSSREFS
Row 3 of array A328250. Positions of 2's in A328248.
Setwise difference A328234 \ A005117. Intersection of A013929 and A328234.
Sequence in context: A072502 A195268 A371083 * A227279 A102042 A332551
KEYWORD
nonn
AUTHOR
Antti Karttunen, Oct 11 2019
STATUS
approved