OFFSET
1,1
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..10000
EXAMPLE
18 = 2 * 3^2 is not squarefree, but its arithmetic derivative A003415(18) = 21 = 3*7 is, thus 18 is included in this sequence.
PROG
(PARI)
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
isA328252(n) = (!issquarefree(n) && issquarefree(A003415(n)));
(PARI)
A003415checked(n) = if(n<=1, 0, my(f=factor(n), s=0); for(i=1, #f~, if(f[i, 2]>=f[i, 1], return(0), s += f[i, 2]/f[i, 1])); (n*s));
A328248(n) = { my(k=1); while(n && !issquarefree(n), k++; n = A003415checked(n)); (!!n*k); };
isA328252(n) = (2==A328248(n));
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Oct 11 2019
STATUS
approved