login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A328254
Dirichlet g.f.: 1 / (zeta(s) * zeta(s-1) * zeta(s-2)).
2
1, -7, -13, 14, -31, 91, -57, -8, 39, 217, -133, -182, -183, 399, 403, 0, -307, -273, -381, -434, 741, 931, -553, 104, 155, 1281, -27, -798, -871, -2821, -993, 0, 1729, 2149, 1767, 546, -1407, 2667, 2379, 248, -1723, -5187, -1893, -1862, -1209, 3871, -2257, 0, 399, -1085
OFFSET
1,2
COMMENTS
Dirichlet inverse of A001001.
LINKS
FORMULA
a(1) = 1; a(n) = -Sum_{d|n, d<n} A001001(n/d) * a(d).
Multiplicative with a(p^e) = -(p^2+p+1) if e=1, p^3+p^2+p if e=2, -p^3 if e=3, and 0 otherwise. - Amiram Eldar, Dec 02 2020
MATHEMATICA
a[1] = 1; a[n_] := -Sum[Sum[j DivisorSigma[1, j], {j, Divisors[n/d]}] a[d], {d, Most @Divisors[n]}]; Table[a[n], {n, 1, 50}]
f[p_, e_] := Which[e==1, -(p^2+p+1), e==2, p^3+p^2+p, e==3, -p^3, e>3, 0]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Dec 02 2020 *)
PROG
(PARI) seq(n)={dirdiv(vector(n, n, n==1), vector(n, n, sumdivmult(n, d, sigma(d)*d)))} \\ Andrew Howroyd, Oct 25 2019
CROSSREFS
Cf. A001001, A046101 (positions of 0's), A046692.
Sequence in context: A104217 A269163 A260482 * A347637 A191976 A135054
KEYWORD
sign,mult
AUTHOR
Ilya Gutkovskiy, Oct 22 2019
STATUS
approved