login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A195268
Numbers whose sum of odd divisors is prime.
4
9, 18, 25, 36, 50, 72, 100, 144, 200, 288, 289, 400, 576, 578, 729, 800, 1152, 1156, 1458, 1600, 1681, 2304, 2312, 2401, 2916, 3200, 3362, 3481, 4608, 4624, 4802, 5041, 5832, 6400, 6724, 6962, 7921, 9216, 9248, 9604, 10082, 10201, 11664, 12800
OFFSET
1,1
COMMENTS
Odd numbers k^2 such that sigma(k^2) is prime, times an arbitrary power of two. - Charles R Greathouse IV, Sep 14 2011
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
EXAMPLE
The divisors of 2312 are { 1, 2, 4, 8, 17, 34, 68, 136, 289, 578, 1156, 2312 }, and the sum of the odd divisors 1 + 17 + 289 = 307 is prime. Hence 2312 = 2*34^2 is in the sequence.
MAPLE
with(numtheory):for n from 1 to 20000 do:x:=divisors(n):n1:=nops(x):s:=0:for m from 1 to n1 do:if irem(x[m], 2)=1 then s:=s+x[m]:fi:od:if type(s, prime)=true then printf(`%d, `, n): else fi:od:
MATHEMATICA
Select[Range[13000], PrimeQ[DivisorSigma[1, #/2^IntegerExponent[#, 2]]] &] (* Amiram Eldar, Jul 31 2022 *)
PROG
(PARI) list(lim)=my(v=List(), t); forstep(k=3, sqrt(lim), 2, if(isprime(sigma(t=k^2)), listput(v, t); while((t<<=1)<=lim, listput(v, t)))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Sep 14 2011
CROSSREFS
Subsequence of A028982.
Sequence in context: A376216 A069562 A072502 * A371083 A328252 A227279
KEYWORD
nonn
AUTHOR
Michel Lagneau, Sep 14 2011
STATUS
approved