OFFSET
1,1
COMMENTS
Odd numbers k^2 such that sigma(k^2) is prime, times an arbitrary power of two. - Charles R Greathouse IV, Sep 14 2011
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
EXAMPLE
The divisors of 2312 are { 1, 2, 4, 8, 17, 34, 68, 136, 289, 578, 1156, 2312 }, and the sum of the odd divisors 1 + 17 + 289 = 307 is prime. Hence 2312 = 2*34^2 is in the sequence.
MAPLE
with(numtheory):for n from 1 to 20000 do:x:=divisors(n):n1:=nops(x):s:=0:for m from 1 to n1 do:if irem(x[m], 2)=1 then s:=s+x[m]:fi:od:if type(s, prime)=true then printf(`%d, `, n): else fi:od:
MATHEMATICA
Select[Range[13000], PrimeQ[DivisorSigma[1, #/2^IntegerExponent[#, 2]]] &] (* Amiram Eldar, Jul 31 2022 *)
PROG
(PARI) list(lim)=my(v=List(), t); forstep(k=3, sqrt(lim), 2, if(isprime(sigma(t=k^2)), listput(v, t); while((t<<=1)<=lim, listput(v, t)))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Sep 14 2011
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Lagneau, Sep 14 2011
STATUS
approved