login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A134484
Triangle, read by rows, where T(n,k) = 2^[n*(n-1) - k*(k-1)] * binomial(n,k) for n>=k>=0.
3
1, 1, 1, 4, 8, 1, 64, 192, 48, 1, 4096, 16384, 6144, 256, 1, 1048576, 5242880, 2621440, 163840, 1280, 1, 1073741824, 6442450944, 4026531840, 335544320, 3932160, 6144, 1, 4398046511104, 30786325577728, 23089744183296, 2405181685760, 37580963840, 88080384, 28672, 1, 72057594037927936, 576460752303423488, 504403158265495552, 63050394783186944, 1231453023109120, 3848290697216, 1879048192, 131072, 1
OFFSET
0,4
COMMENTS
Has similar matrix power formulas as those for triangle A134049.
FORMULA
[T^(2^m)](n,k) = (2^m)^(n-k) * 2^[n*(n-1) - k*(k-1)] * C(n,k) for n>=k>=0 ; this is the formula for the matrix power T^(2^m) at row n and column k.
Matrix log is given by: [log(T)](n+1,n) = (n+1)*4^n for n>=0 along a secondary diagonal with zeros elsewhere.
EXAMPLE
Matrix powers of triangle T also satisfy:
(1) [T^(2^m)](n,k) = T(n+m,k+m)/(2^m)^(n-k) for n>=k>=0;
(2) [T^( 1/2^(n-1) )](n,k) = (2^k)^(n-k) * C(n,k) for n>=k>=0;
compare to the formulas for matrix powers of triangle A134049.
Triangle T begins:
1;
1, 1;
4, 8, 1;
64, 192, 48, 1;
4096, 16384, 6144, 256, 1;
1048576, 5242880, 2621440, 163840, 1280, 1;
1073741824, 6442450944, 4026531840, 335544320, 3932160, 6144, 1;
4398046511104, 30786325577728, 23089744183296, 2405181685760, 37580963840, 88080384, 28672, 1; ...
Matrix log of this triangle begins:
0;
1, 0;
0, 8, 0;
0, 0, 48, 0;
0, 0, 0, 256, 0;
0, 0, 0, 0, 1280, 0;
0, 0, 0, 0, 0, 6144, 0; ...
a single nonzero diagonal given by [log(T)](n+1,n) = (n+1)*4^n.
Matrix square of this triangle begins:
1;
2, 1;
16, 16, 1;
512, 768, 96, 1;
65536, 131072, 24576, 512, 1;
33554432, 83886080, 20971520, 655360, 2560, 1; ...
where [T^2](n,k) = 2^(n-k) * 2^[n*(n-1) - k*(k-1)] * C(n,k) for n>=k>=0.
Matrix 4th power of this triangle begins:
1;
4, 1;
64, 32, 1;
4096, 3072, 192, 1;
1048576, 1048576, 98304, 1024, 1;
1073741824, 1342177280, 167772160, 2621440, 5120, 1; ...
where [T^4](n,k) = 4^(n-k) * 2^[n*(n-1) - k*(k-1)] * C(n,k) for n>=k>=0.
Matrix 8th power of this triangle begins:
1;
8, 1;
256, 64, 1;
32768, 12288, 384, 1;
16777216, 8388608, 393216, 2048, 1;
34359738368, 21474836480, 1342177280, 10485760, 10240, 1; ...
where [T^8](n,k) = 8^(n-k) * 2^[n*(n-1) - k*(k-1)] * C(n,k) for n>=k>=0.
Matrix square-root of this triangle begins:
1;
1/2, 1;
1, 4, 1; <== row 2: [T^(1/2^1)](2,k) = (2^k)^(2-k)*C(2,k), k=0..2
8, 48, 24, 1;
256, 2048, 1536, 128, 1;
32768, 327680, 327680, 40960, 640, 1;
16777216, 201326592, 251658240, 41943040, 983040, 3072, 1; ...
Matrix 4th root of this triangle begins:
1;
1/4, 1;
1/4, 2, 1;
1, 12, 12, 1; <== row 3: [T^(1/2^2)](3,k) = (2^k)^(3-k)*C(3,k), k=0..3
16, 256, 384, 64, 1;
1024, 20480, 40960, 10240, 320, 1;
262144, 6291456, 15728640, 5242880, 245760, 1536, 1; ...
Matrix 8th root of this triangle begins:
1;
1/8, 1;
1/16, 1, 1;
1/8, 3, 6, 1;
1, 32, 96, 32, 1; <== row 4: [T^(1/2^3)](4,k) = (2^k)^(4-k)*C(4,k), k=0..4
32, 1280, 5120, 2560, 160, 1;
4096, 196608, 983040, 655360, 61440, 768, 1; ...
PROG
(PARI) {T(n, k)=2^(n*(n-1) - k*(k-1))*binomial(n, k)}
for(n=0, 12, for(k=0, n, print1(T(n, k), ", ")); print(""))
(PARI) /* Matrix Power T^(2^m): */
{T(n, k, m)=2^(m*(n-k))*2^(n*(n-1) - k*(k-1))*binomial(n, k)}
for(n=0, 12, for(k=0, n, print1(T(n, k), ", ")); print(""))
CROSSREFS
Cf. A134049; A134485 (row sums).
Sequence in context: A367416 A295086 A331331 * A244641 A274192 A021958
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Oct 28 2007
EXTENSIONS
Entry revised by Paul D. Hanna, Jun 24 2016
STATUS
approved