The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A003405 G.f.: (1 + x^4 + x^7 + 2*x^8 + x^9 + x^12 + x^16)/Product_{i=1..8} (1 - x^i). (Formerly M0754) 3
 1, 1, 2, 3, 6, 8, 13, 19, 30, 41, 59, 80, 113, 149, 202, 264, 350, 447, 578, 730, 928, 1155, 1444, 1777, 2193, 2667, 3249, 3915, 4721, 5635, 6728, 7967, 9432, 11083, 13016, 15191, 17717, 20544, 23801, 27440, 31604, 36234, 41501, 47345, 53954, 61260, 69480, 78546, 88699 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Enumerates certain partially ordered sets of integers. REFERENCES J. C. P. Miller, On the enumeration of partially ordered sets of integers, pp. 109-124 of T. P. McDonough and V. C. Mavron, editors, Combinatorics: Proceedings of the Fourth British Combinatorial Conference 1973. London Mathematical Society, Lecture Note Series, Number 13, Cambridge University Press, NY, 1974. The g.f. is P(t) on page 122. N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS FORMULA a(n) = p(n,8) + p(n-4,8) + p(n-7,8) + 2*p(n-8,8) + p(n-9,8) + p(n-12,8) + p(n-16,8) where p(n,k) is the number of partitions of n into at most k parts. - Sean A. Irvine, Apr 22 2015 MAPLE (1+x^4+x^7+2*x^8+x^9+x^12+x^16)/mul(1-x^i, i=1..8); CROSSREFS Cf. A003402, A003403, A003404, A029073, A256975, A256976, A256977. Sequence in context: A285472 A318027 A004101 * A153918 A308909 A308958 Adjacent sequences:  A003402 A003403 A003404 * A003406 A003407 A003408 KEYWORD nonn AUTHOR EXTENSIONS Entry revised by N. J. A. Sloane, Apr 22 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 5 08:27 EDT 2021. Contains 346464 sequences. (Running on oeis4.)