login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A004101
Number of partitions of n of the form a_1*b_1^2 + a_2*b_2^2 + ...; number of semisimple rings with p^n elements for any prime p.
(Formerly M0753)
15
1, 1, 2, 3, 6, 8, 13, 18, 29, 40, 58, 79, 115, 154, 213, 284, 391, 514, 690, 900, 1197, 1549, 2025, 2600, 3377, 4306, 5523, 7000, 8922, 11235, 14196, 17777, 22336, 27825, 34720, 43037, 53446, 65942, 81423, 100033, 122991, 150481, 184149, 224449, 273614, 332291
OFFSET
0,3
COMMENTS
The number of semisimple rings with p^n elements does not depend on the prime number p. - Paul Laubie, Mar 05 2024
REFERENCES
J. Knopfmacher, Abstract Analytic Number Theory. North-Holland, Amsterdam, 1975, p. 293.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Alois P. Heinz and Vaclav Kotesovec, Table of n, a(n) for n = 0..10000 (terms 0..1000 from Alois P. Heinz)
Gert Almkvist, Asymptotics of various partitions, arXiv:math/0612446 [math.NT], 2006 (section 6).
I. G. Connell, A number theory problem concerning finite groups and rings, Canad. Math. Bull, 7 (1964), 23-34.
N. J. A. Sloane, Transforms
FORMULA
EULER transform of A046951.
a(n) ~ exp(Pi^2 * sqrt(n) / 3 + sqrt(3/(2*Pi)) * Zeta(1/2) * Zeta(3/2) * n^(1/4) - 9 * Zeta(1/2)^2 * Zeta(3/2)^2 / (16*Pi^3)) * Pi^(3/4) / (sqrt(2) * 3^(1/4) * n^(5/8)) [Almkvist, 2006]. - Vaclav Kotesovec, Jan 03 2017
EXAMPLE
4 = 4*1^2 = 1*2^2 = 3*1^2 + 1*1^2 = 2*1^2 + 2*1^2 = 2*1^2 + 1*1^2 + 1*1^2 = 1*1^2 + 1*1^2 + 1*1^2 + 1*1^2.
MAPLE
with(numtheory):
a:= proc(n) option remember;
`if`(n=0, 1, add(add(d* mul(1+iquo(i[2], 2),
i=ifactors(d)[2]), d=divisors(j))*a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..60); # Alois P. Heinz, Nov 26 2013
sqd:=proc(n) local t1, d; t1:=0; for d in divisors(n) do if (n mod d^2) = 0 then t1:=t1+1; fi; od; t1; end; # A046951
t2:=mul( 1/(1-x^n)^sqd(n), n=1..65); series(t2, x, 60); seriestolist(%); # N. J. A. Sloane, Jun 24 2015
MATHEMATICA
max = 45; A046951 = Table[Sum[Floor[n/k^2], {k, n}], {n, 0, max}] // Differences; f = Product[1/(1-x^n)^A046951[[n]], {n, 1, max}]; CoefficientList[Series[f, {x, 0, max}], x] (* Jean-François Alcover, Feb 11 2014 *)
nmax = 50; CoefficientList[Series[Product[1/(1 - x^(j*k^2)), {k, 1, Floor[Sqrt[nmax]] + 1}, {j, 1, Floor[nmax/k^2] + 1}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jan 03 2017 *)
PROG
(PARI) N=66; x='x+O('x^N); gf=1/prod(j=1, N, eta(x^(j^2))); Vec(gf) /* Joerg Arndt, May 03 2008 */
CROSSREFS
KEYWORD
nonn,nice,easy
EXTENSIONS
More terms, formula and better description from Christian G. Bower, Nov 15 1999
Name clarified by Paul Laubie, Mar 05 2024
STATUS
approved