The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A038538 Number of semisimple rings with n elements. 8
 1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 6, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 8, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 6, 2, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 2, 1, 1, 2, 13, 1, 1, 1, 2, 1, 1, 1, 6, 1, 1, 2, 2, 1, 1, 1, 6, 6, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 2, 1, 1, 1, 8, 1, 2, 2 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 COMMENTS Enumeration uses Wedderburn-Artin theorem and fact that a finite division ring is a field. a(n) depends only on prime signature of n (cf. A025487). So a(24) = a(375) since 24 = 2^3 * 3 and 375 = 3 * 5^3 both have prime signature (3,1). REFERENCES T. Y. Lam, A First Course in Noncommutative Rings, Springer-Verlag. LINKS Antti Karttunen, Table of n, a(n) for n = 1..16384 FORMULA a(p^k) = A004101(k). For all n, a(A002110(n)) = a(A005117(n)) = 1. PROG (PARI) v004101from1 = [1, 2, 3, 6, 8, 13, 18, 29, 40, 58, 79, 115, 154, 213, 284, 391, 514, 690, 900, 1197]; \\ From the data-section of A004101. A004101(n) = v004101from1[n]; vecproduct(v) = { my(m=1); for(i=1, #v, m *= v[i]); m; }; A038538(n) = vecproduct(apply(e -> A004101(e), factorint(n)[, 2])); \\ Antti Karttunen, Nov 18 2017 CROSSREFS Cf. A002110, A004101, A005117, A027623, A052305. Sequence in context: A319786 A321271 A305193 * A293515 A326622 A292777 Adjacent sequences:  A038535 A038536 A038537 * A038539 A038540 A038541 KEYWORD nonn,nice,mult AUTHOR Paolo Dominici (pl.dm(AT)libero.it) STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 10 16:16 EDT 2021. Contains 342845 sequences. (Running on oeis4.)