OFFSET
1,2
COMMENTS
These are points at which the second differences (A376596) are zero.
Inclusive means 1 is a prime-power. For the exclusive version, subtract 1 and shift left.
LINKS
EXAMPLE
The prime-powers inclusive (A000961) are:
1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 27, 29, 31, 32, 37, 41, 43, ...
with first differences (A057820):
1, 1, 1, 1, 2, 1, 1, 2, 2, 3, 1, 2, 4, 2, 2, 2, 2, 1, 5, 4, 2, 4, 2, 4, 6, 2, ...
with first differences (A376596):
0, 0, 0, 1, -1, 0, 1, 0, 1, -2, 1, 2, -2, 0, 0, 0, -1, 4, -1, -2, 2, -2, 2, 2, ...
with zeros (A376597) at:
1, 2, 3, 6, 8, 14, 15, 16, 27, 32, 50, 61, 67, 72, 85, 92, 93, 124, 129, 132, ...
MATHEMATICA
Join@@Position[Differences[Select[Range[1000], #==1||PrimePowerQ[#]&], 2], 0]
CROSSREFS
The complement is A376598.
A064113 lists positions of adjacent equal prime gaps.
For prime-powers inclusive: A057820 (first differences), A376596 (second differences), A376598 (nonzero curvature).
KEYWORD
nonn
AUTHOR
Gus Wiseman, Oct 05 2024
STATUS
approved