login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A376599
Second differences of consecutive non-prime-powers inclusive (A024619). First differences of A375735.
28
-2, 0, -1, 2, -1, -1, 0, 1, 0, 0, 0, 1, -2, 0, 0, 1, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, -1, 0, 0, 0, 1, 0, -1, 1, -1, 1, -1, 0, 1, 0, -1, 0, 0, 0, 1, 0, 0, -1, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 1, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, -1, 0, 0, 0, 0, 0, 1, -1, 0
OFFSET
1,1
COMMENTS
Inclusive means 1 is a prime-power but not a non-prime-power. For the exclusive version, shift left once.
EXAMPLE
The non-prime-powers inclusive (A024619) are:
6, 10, 12, 14, 15, 18, 20, 21, 22, 24, 26, 28, 30, 33, 34, 35, 36, 38, 39, 40, ...
with first differences (A375735):
4, 2, 2, 1, 3, 2, 1, 1, 2, 2, 2, 2, 3, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, ...
with first differences (A376599):
-2, 0, -1, 2, -1, -1, 0, 1, 0, 0, 0, 1, -2, 0, 0, 1, -1, 0, 1, 0, -1, 0, 1, 0, ...
MATHEMATICA
Differences[Select[Range[100], !(#==1||PrimePowerQ[#])&], 2]
PROG
(Python)
from sympy import primepi, integer_nthroot
def A376599(n):
def iterfun(f, n=0):
m, k = n, f(n)
while m != k: m, k = k, f(k)
return m
def f(x): return int(n+1+sum(primepi(integer_nthroot(x, k)[0]) for k in range(1, x.bit_length())))
return (a:=iterfun(f, n))-((b:=iterfun(lambda x:f(x)+1, a))<<1)+iterfun(lambda x:f(x)+2, b) # Chai Wah Wu, Oct 02 2024
CROSSREFS
The version for A000002 is A376604, first differences of A054354.
For first differences we had A375735, ones A375713(n) - 1.
Positions of zeros are A376600, complement A376601.
A000961 lists prime-powers inclusive, exclusive A246655.
A007916 lists non-perfect-powers.
A057820 gives first differences of prime-powers inclusive, first appearances A376341, sorted A376340.
A321346/A321378 count integer partitions without prime-powers, factorizations A322452.
For non-prime-powers: A024619/A361102 (terms), A375735/A375708 (first differences), A376600 (inflections and undulations), A376601 (nonzero curvature).
For second differences: A036263 (prime), A073445 (composite), A376559 (perfect-power), A376562 (non-perfect-power), A376590 (squarefree), A376593 (nonsquarefree), A376596 (prime-power).
Sequence in context: A117997 A079684 A358138 * A033761 A033805 A033797
KEYWORD
sign
AUTHOR
Gus Wiseman, Oct 02 2024
STATUS
approved