login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A094909
Let p_k(n) = number of partitions of n into exactly k parts; sequence gives p_3(n-3) + p_2(n-2) + 1.
0
1, 1, 1, 1, 2, 2, 4, 4, 6, 7, 9, 10, 13, 14, 17, 19, 22, 24, 28, 30, 34, 37, 41, 44, 49, 52, 57, 61, 66, 70, 76, 80, 86, 91, 97, 102, 109, 114, 121, 127, 134, 140, 148, 154, 162, 169, 177, 184, 193, 200, 209, 217, 226, 234, 244, 252, 262, 271, 281, 290, 301, 310, 321
OFFSET
0,5
LINKS
S. L. Devadoss, Combinatorial equivalence of real moduli spaces, Notices Amer. Math. Soc., 51 (No. 6, 2004), 620-628 (see Cor. 7).
FORMULA
G.f.: (x^7-x^6-x^5-x^4+x^3+x^2-1)/((1+x)*(x^2+x+1)*(x-1)^3). - Alois P. Heinz, Jul 19 2015
72*a(n) = 8*A099837(n+3) +27*(-1)^n +29 +6*n^2, (n>1). - R. J. Mathar, Nov 15 2019
PROG
(PARI) Vec((x^7-x^6-x^5-x^4+x^3+x^2-1)/((1+x)*(x^2+x+1)*(x-1)^3) + O(x^80)) \\ Michel Marcus, Jul 19 2015
CROSSREFS
p_k(n) = A008284(n,k).
Sequence in context: A337030 A319400 A174787 * A237799 A318029 A319401
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Jun 18 2004
EXTENSIONS
a(0)=1 prepended by Alois P. Heinz, Jul 19 2015
STATUS
approved