login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A319400
Number of partitions of n into exactly seven positive Fibonacci numbers.
4
0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 4, 4, 6, 7, 9, 9, 11, 11, 14, 14, 16, 15, 19, 17, 20, 20, 22, 21, 24, 22, 27, 25, 27, 26, 31, 28, 30, 29, 32, 29, 32, 30, 34, 33, 34, 34, 37, 36, 38, 36, 41, 37, 38, 39, 41, 41, 40, 39, 41, 38, 41, 38, 41, 42, 40, 41, 46, 43
OFFSET
0,10
LINKS
FORMULA
a(n) = [x^n y^7] 1/Product_{j>=2} (1-y*x^A000045(j)).
MAPLE
h:= proc(n) option remember; `if`(n<1, 0, `if`((t->
issqr(t+4) or issqr(t-4))(5*n^2), n, h(n-1)))
end:
b:= proc(n, i, t) option remember; `if`(n=0, 1, `if`(i<1 or
t<1, 0, b(n, h(i-1), t)+b(n-i, h(min(n-i, i)), t-1)))
end:
a:= n-> (k-> b(n, h(n), k)-b(n, h(n), k-1))(7):
seq(a(n), n=0..120);
CROSSREFS
Column k=7 of A319394.
Cf. A000045.
Sequence in context: A348588 A106247 A337030 * A174787 A094909 A237799
KEYWORD
nonn,look
AUTHOR
Alois P. Heinz, Sep 18 2018
STATUS
approved