login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A319398
Number of partitions of n into exactly five positive Fibonacci numbers.
4
0, 0, 0, 0, 0, 1, 1, 2, 2, 4, 4, 5, 5, 7, 6, 7, 7, 8, 7, 9, 8, 10, 9, 9, 8, 11, 8, 10, 10, 11, 10, 11, 10, 13, 10, 11, 8, 10, 10, 10, 11, 12, 11, 11, 11, 13, 11, 12, 11, 12, 12, 11, 11, 13, 12, 10, 8, 10, 9, 9, 12, 11, 10, 13, 10, 14, 14, 11, 11, 11, 11, 13
OFFSET
0,8
LINKS
FORMULA
a(n) = [x^n y^5] 1/Product_{j>=2} (1-y*x^A000045(j)).
MAPLE
h:= proc(n) option remember; `if`(n<1, 0, `if`((t->
issqr(t+4) or issqr(t-4))(5*n^2), n, h(n-1)))
end:
b:= proc(n, i, t) option remember; `if`(n=0, 1, `if`(i<1 or
t<1, 0, b(n, h(i-1), t)+b(n-i, h(min(n-i, i)), t-1)))
end:
a:= n-> (k-> b(n, h(n), k)-b(n, h(n), k-1))(5):
seq(a(n), n=0..120);
MATHEMATICA
h[n_] := h[n] = If[n < 1, 0, If[Function[t, IntegerQ@Sqrt[t + 4] || IntegerQ@Sqrt[t - 4]][5 n^2], n, h[n - 1]]];
b[n_, i_, t_] := b[n, i, t] = If[n == 0, 1, If[i < 1 || t < 1, 0, b[n, h[i - 1], t] + b[n - i, h[Min[n - i, i]], t - 1]]];
a[n_] := With[{k = 5}, b[n, h[n], k] - b[n, h[n], k - 1]];
a /@ Range[0, 120] (* Jean-François Alcover, Dec 08 2020 *)
CROSSREFS
Column k=5 of A319394.
Cf. A000045.
Sequence in context: A116648 A152850 A036714 * A260734 A265428 A035644
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Sep 18 2018
STATUS
approved