login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A319403
Number of partitions of n into exactly ten positive Fibonacci numbers.
3
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 4, 4, 6, 7, 10, 11, 14, 15, 19, 20, 24, 25, 31, 30, 35, 36, 42, 42, 48, 47, 54, 54, 59, 60, 69, 66, 73, 72, 80, 79, 86, 85, 92, 91, 97, 96, 107, 103, 110, 110, 118, 117, 123, 123, 132, 130, 135, 134, 142, 141, 146, 145
OFFSET
0,13
LINKS
FORMULA
a(n) = [x^n y^10] 1/Product_{j>=2} (1-y*x^A000045(j)).
MAPLE
h:= proc(n) option remember; `if`(n<1, 0, `if`((t->
issqr(t+4) or issqr(t-4))(5*n^2), n, h(n-1)))
end:
b:= proc(n, i, t) option remember; `if`(n=0, 1, `if`(i<1 or
t<1, 0, b(n, h(i-1), t)+b(n-i, h(min(n-i, i)), t-1)))
end:
a:= n-> (k-> b(n, h(n), k)-b(n, h(n), k-1))(10):
seq(a(n), n=0..120);
CROSSREFS
Column k=10 of A319394.
Cf. A000045.
Sequence in context: A319401 A322369 A319402 * A029008 A240844 A136343
KEYWORD
nonn,look
AUTHOR
Alois P. Heinz, Sep 18 2018
STATUS
approved