login
A379671
Array read by antidiagonals downward where A(n,k) is the number of finite sets of positive integers with sum n and product k.
26
1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0
OFFSET
1,73
COMMENTS
Counts finite sets of positive integers by sum and product.
EXAMPLE
Array begins:
k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k10 k11 k12
-----------------------------------------------
n=0: 1 0 0 0 0 0 0 0 0 0 0 0
n=1: 1 0 0 0 0 0 0 0 0 0 0 0
n=2: 0 1 0 0 0 0 0 0 0 0 0 0
n=3: 0 1 1 0 0 0 0 0 0 0 0 0
n=4: 0 0 1 1 0 0 0 0 0 0 0 0
n=5: 0 0 0 1 1 1 0 0 0 0 0 0
n=6: 0 0 0 0 1 2 0 1 0 0 0 0
n=7: 0 0 0 0 0 1 1 1 0 1 0 1
n=8: 0 0 0 0 0 0 1 1 0 1 0 2
n=9: 0 0 0 0 0 0 0 1 1 0 0 1
n=10: 0 0 0 0 0 0 0 0 1 1 0 0
n=11: 0 0 0 0 0 0 0 0 0 1 1 0
n=12: 0 0 0 0 0 0 0 0 0 0 1 1
The A(8,12) = 2 sets are: {2,6}, {1,3,4}.
The A(14,40) = 2 sets are: {4,10}, {1,5,8}.
Antidiagonals begin:
n+k=1: 1
n+k=2: 0 1
n+k=3: 0 0 0
n+k=4: 0 0 1 0
n+k=5: 0 0 0 1 0
n+k=6: 0 0 0 1 0 0
n+k=7: 0 0 0 0 1 0 0
n+k=8: 0 0 0 0 1 0 0 0
n+k=9: 0 0 0 0 0 1 0 0 0
n+k=10: 0 0 0 0 0 1 0 0 0 0
n+k=11: 0 0 0 0 0 1 1 0 0 0 0
n+k=12: 0 0 0 0 0 0 2 0 0 0 0 0
n+k=13: 0 0 0 0 0 0 0 1 0 0 0 0 0
n+k=14: 0 0 0 0 0 0 1 1 0 0 0 0 0 0
n+k=15: 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
n+k=16: 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
For example, antidiagonal n+k=11 counts the following sets:
n=5: {2,3}
n=6: {1,5}
so the 11th antidiagonal is: (0,0,0,0,0,1,1,0,0,0,0).
MATHEMATICA
nn=12;
tt=Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&Times@@#==k&]], {n, 0, nn}, {k, 1, nn}] (* array *)
tr=Table[tt[[j, i-j]], {i, 2, nn}, {j, i-1}] (* antidiagonals *)
Join@@tr (* sequence *)
CROSSREFS
Row sums are A000009 = strict partitions, non-strict A000041.
Column sums are 2*A045778 where A045778 = strict factorizations, non-strict A001055.
Antidiagonal sums are A379672, non-strict A379667 (zeros A379670).
Without ones we have A379678, antidiagonal sums A379679 (zeros A379680).
The non-strict version is A379666, without ones A379668.
A316439 counts factorizations by length, partitions A008284.
A326622 counts factorizations with integer mean, strict A328966.
Counting and ranking multisets by comparing sum and product:
- same: A001055, ranks A301987
- divisible: A057567, ranks A326155
- divisor: A057568, ranks A326149, see A379733
- greater than: A096276 shifted right, ranks A325038
- greater or equal: A096276, ranks A325044
- less than: A114324, ranks A325037, see A318029
- less or equal: A319005, ranks A379721, see A025147
- different: A379736, ranks A379722, see A111133
Sequence in context: A102448 A102683 A122840 * A083919 A063665 A276306
KEYWORD
nonn,tabl
AUTHOR
Gus Wiseman, Jan 01 2025
STATUS
approved