The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A276306 Number of pairs of integers (k, m) with k < m < n such that (k, m, n) is an abc-triple. 0
 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 3,79 COMMENTS An abc-triple is a set of three integers (a, b, c) such that a+b = c, gcd(a, b) = 1 and rad(a, b, c) < c, where rad() gives the product of the distinct prime factors of its arguments. a(n) > 0 for n in A120498. a(n) gives the number of times n appears in A130510. a(n) gives the number of i such that A225426(A008585(i)) = n. LINKS Wikipedia, abc conjecture. EXAMPLE For n = 81: there are 2 abc-triples for c = 81 with a < b < c, namely (32, 49, 81) and (1, 80, 81), so a(81) = 2. MATHEMATICA rad[a_, b_, c_] := Times @@ FactorInteger[a b c][[All, 1]]; abcTripleQ[a_, b_, c_] := a + b == c && GCD[a, b] == 1 && rad[a, b, c] < c; a[n_] := (For[i = 0; m = 1, m <= n-1, m++, For[k = 1, k <= m-1, k++, If[ abcTripleQ[k, m, n], i++]]]; i); Table[a[n], {n, 3, 89}] (* Jean-François Alcover, Sep 04 2016, partly adapted from PARI *) PROG (PARI) rad(x, y, z) = my(f=factor(x*y*z)[, 1]~); prod(i=1, #f, f[i]) is_abc_hit(x, y, z) = z==x+y && gcd(x, y)==1 && rad(x, y, z) < z a(n) = my(i=0); for(m=1, n-1, for(k=1, m-1, if(is_abc_hit(k, m, n), i++))); i CROSSREFS Cf. A120498, A130510, A225426. Sequence in context: A122840 A083919 A063665 * A072507 A340851 A130779 Adjacent sequences:  A276303 A276304 A276305 * A276307 A276308 A276309 KEYWORD nonn AUTHOR Felix Fröhlich, Aug 29 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 6 08:24 EDT 2021. Contains 343580 sequences. (Running on oeis4.)